# Partial Orderings, Lattices, and Boolean Algebra

### Definition:

A binary relation *R* on a set is called a partial ordering if it is reflexive, antisymmetric, and transitive.

### • Example:

□ "refines" is a partial ordering on the set of all the partitions.

#### Notation:

 $\leq$  is used as a generic symbol for partial ordering.

 $\Box A = \{1, 2, 3, 5, 6, 10, 15, 30\}$ 

"divides" relation: *x* divides *y* if *x* is a factor of *y* 

⇒  $2 \le 6$  and  $3 \le 6$  are true but  $5 \le 6$  is not true.

### Definition:

When *R* is a partial ordering on a set *A*, the pair (A, R) is called a partially ordered set or a poset.

### Examples of posets:

- $\Box$  (**R**,  $\leq$ )
- $\Box$  (the set of all the partitions, refines)
- $\Box$  (Z<sup>+</sup>, divides)

#### $\Box \ (\wp(A), \subseteq)$

#### • Theorem:

If *R* is a partial ordering on a set *A*, then  $R^c$  is also a partial ordering on *A*.

### Definition:

Let *R* be a partial ordering on a set *A* and let  $X \subseteq A$ . The restriction of *R* on *X*, denoted *R*/*X*, is defined by

$$R/X = \{ (x, y) \mid x \in X \land y \in X \land (x, y) \in R \}$$

Example:

 $A = \mathbb{Z}^{+} \qquad X = \{1, 2, 3, 4, 5, 6, 7\}$  $\Box \text{ divides}/X = \{(1, 1), (1, 2), \dots, (1, 7), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6), (7, 7)\}$ 

#### Theorem:

Let *R* be a partial ordering on a set *A* and let  $X \subseteq A$ . Then *R*/*X* is a partial ordering on *X*.

#### Definition:

Let *R* be a partial ordering on a set *A*. If  $a, b \in A$  are such that either  $(a, b) \in R$  or  $(b, a) \in R$  then *a* and *b* are said to be comparable.

#### Example:

- $A = \{a, b, c\} \qquad R = \{(a, a), (b, b), (c, c), (a, b)\}$
- $\square$  a and b are comparable.
- $\square$  and c are not comparable. b and c are not comparable.

### Definition:

Let *R* be a partial ordering on a set *A* such that every pair  $a, b \in A$  is comparable. Then *R* is said to be a linear ordering (total ordering) and (*A*, *R*) is said to be a linearly ordered set (totally ordered set) or a chain.

### Definition:

A relation *R* on a set *A* is called a strict partial ordering if it is irreflexive, asymmetric, and transitive.

### • Example:

 $A = \{a, b, c\} \qquad R = \{(a, a), (b, b), (c, c), (a, b)\}$ 

 $\square$   $R' = \{(a, b)\}$  is a strict partial ordering

Notation:

< is used as a generic symbol for strict partial ordering.

$$< = \{ (x, y) \mid (x, y) \in \le \land x \neq y \} = \le - E_A$$

Definition:

Let < be a strict partial ordering on a set *A*. Then the covers relation with respect to < on *A*, denoted by  $covers_{<}$ , is defined as follows:

 $covers_{<} = \{(x, y) | y < x \text{ and there is no } z \text{ such that } y < z \text{ and } z < x\}$ 

### Example:

 $\square$  "divides" relation on *A* = {1, 2, 3, 5, 6, 10, 15, 30}

$$\Box <= \leq -E_A$$

$$= \{(1, 2), \dots, (1, 30), (2, 6), (2, 10), (2, 30), (3, 6), (3, 15), (3, 30), (5, 10), (5, 15), (5, 30), (6, 30), (15, 30), (10, 30)\}$$

$$\Box \text{ covers}_{<} = \{(2, 1), (3, 1), (5, 1), (6, 2), (6, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (15, 3), (10, 2), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10, 5), (10,$$

 $(15, 5), (30, 6), (30, 10), (30, 15)\}$ 



#### Example:

 $\Box$  "divides" relation on *A* = {2, 3, 12, 18, 36, 72}

 $\Box <= \{ (2, 12), (2, 18), (2, 36), (2, 72), (3, 12), (3, 18), (3, 36), (3, 72), (12, 36), (12, 72), (18, 36), (18, 72), (36, 72) \}$ 

 $\Box$  covers<sub><</sub> = {(12, 2), (12, 3), (18, 2), (18, 3), (36, 12), (36, 18), (72, 36)}



We can write  $\leq$  from the Hasse diagram.

### Example:

- $\square$  "less than or equal to" relation on  $A = \{1, 2, 3, 4, 5\}$
- $\Box$  This relation is a linear ordering.
- The poset is called a linearly ordered set, totally ordered set, or chain.



### Example:

- □ Identity relation  $E_A$  on  $A = \{a, b, c\}$
- This relation is
  - reflexive
  - symmetric
  - antisymmetric
  - transitive



Hasse diagram of  $E_A$ :

$$\circ a \circ b \circ c$$

### Definition:

- Let  $(A, \leq)$  be a poset and let  $X \subseteq A$ . Then,
- $\Box a \in X$  is the greatest element of X if  $x \le a$  for every  $x \in X$ .
- $\Box a \in X$  is the least element of X if  $a \le x$  for every  $x \in X$ .
- □  $a \in X$  is the maximal element of X if there is no  $x \in X$  such that a < x.
- □  $a \in X$  is the minimal element of X if there is no  $x \in X$  such that x < a.

### Example:

 $\square$  "divides" relation on *A* = {2, 3, 12, 18, 36, 72}

 $\square X_1 = \{2, 3, 12\}$ 

- greatest element of  $X_1$ : 12
- least element of  $X_1$ : none
- $\Box X_2 = \{2, 3, 12, 18\}$ 
  - greatest element of X<sub>2</sub>: none
  - least element of  $X_2$ : none



### Theorem:

Let  $(A, \leq)$  be a poset and let  $X \subseteq A$ . Then the greatest (least) element of X if it exists is unique.

Proof :

Let there be two elements *a* and *b* which are the greatest elements of *X*.

Then,  $a \le b$  because *b* is the greatest element of *X* and  $a \in X$ . Similarly,  $b \le a$  because *a* is the greatest element of *X* and  $b \in X$ . From  $a \le b$  and  $b \le a$ , we conclude a = b because  $\le$  is symmetric.

### Example:

 $\square$  "divides" relation on *A* = {2, 3, 12, 18, 36, 72}

 $\square X_1 = \{2, 3, 12\}$ 

- maximal element of  $X_1$ : 12
- minimal element of  $X_1$ : 2, 3
- $\Box X_2 = \{2, 3, 12, 18\}$ 
  - maximal element of  $X_2$ : 12, 18
  - minimal element of  $X_2$ : 2, 3



### • Theorem:

Let  $(A, \leq)$  be a poset and let  $X \subseteq A$ . If  $a \in X$  is the unique maximal (minimal) element of *X* then *a* is the greatest (least) element of *X*.

#### Definition:

- Let  $(A, \leq)$  be a poset and let  $X \subseteq A$ . Then,
- $\Box a \in A$  is the upper bound of *X* if  $x \le a$  for every  $x \in X$ .
- $\Box a \in A$  is the lower bound of *X* if  $a \leq x$  for every  $x \in X$ .

### Example:

 $\square$  "divides" relation on *A* = {2, 3, 12, 18, 36, 72}

 $\Box X = \{12, 18, 36\}$ 

- **greatest element:** 36
- least element: none
- maximal element: 36
- minimal element: 12, 18
- upper bound: 36, 72
- Iower bound: 2, 3



### Definition:

- Let  $(A, \leq)$  be a poset and let  $X \subseteq A$ . Then,
- □ The least element of the set of upper bounds of X is called the least upper bound (LUB, supremum) of X.
- □ The greatest element of the set of lower bounds of X is called the greatest lower bound (GLB, infimum) of X.

### Example:

- $\square$  "divides" relation on *A* = {2, 3, 12, 18, 36, 72}
- $\Box X = \{12, 18, 36\}$ 
  - LUB of *X*: 36
  - GLB of X: none



### Example:

□ Consider the poset ( $\wp(A)$ , ⊆) where  $A = \{a, b, c\}$ .

 $\Box$  Let  $X_i, X_j \in \mathcal{O}(A)$ . Then,

• LUB of  $\{X_i, X_j\} = X_i \cup X_j$ 

• GLB of 
$$\{X_i, X_j\} = X_i \cap X_j$$



#### Example:

□ Consider the poset (*A*, divides) where  $A = \{1, 2, 3, 5, 6, 10, 15, 30\}$ .

 $\Box$  Let  $a, b \in A$ . Then,

- LUB of  $\{a, b\}$  = LCM (Least Common Multiple) of a and b
- GLB of  $\{a, b\}$  = GCD (Greatest Common Divisor) of a and b



## Isomorphism

### Definition:

Let  $(A, \leq)$  and  $(B, \leq')$  be two posets and let  $f: A \rightarrow B$ . The function f is said to be order preserving relative to  $\leq$  and  $\leq'$  if and only if for every  $a, b \in A$  if  $a \leq b$  then  $f(a) \leq' f(b)$ .

### Isomorphism

#### Example:



□  $f(a_i) = b_i (1 \le i \le 4)$  is order preserving.  $a_i \le a_j \rightarrow f(a_i) = b_i \le' b_j = f(a_j)$  for all *i*, *j*. □  $f^{-1}$ : *B* → *A* is not order preserving.

## Isomorphism

### Definition:

Let  $(A, \leq)$  and  $(B, \leq')$  be two posets and let  $f: A \rightarrow B$ . If both f and  $f^{-1}$  is order preserving, then f is said to be an order isomorphism (or just isomorphism) between  $(A, \leq)$  and  $(B, \leq')$  and the posets are said to be order-isomorphic (or just isomorphic).

Example:



### Definition:

A poset  $(A, \leq)$  is said to be a lattice if for every  $a, b \in A$  there is a LUB and a GLB.

Examples:



### • Operation:

 $\Box$  An *n*-ary operation on a set *A* is a function.

$$f: \underbrace{A \times A \times \cdots \times A}_{n} \to A$$

Binary operation

 $f: A \times A \to A$ 

□ On a lattice, GLB and LUB are binary operations.

• 
$$GLB(a, b) = a * b$$

• LUB(a, b) = a + b

#### Theorem:

If  $(A, \leq)$  is a lattice, then for any  $x, y \in A$ 

1. x \* y = x iff  $x \le y$ 

**2.** x + y = y iff  $x \le y$ 

Proof of 1

(if part)

```
Assume x \le y.
```

Since  $x \le x$  and  $x \le y$ , x is a lower bound of x and y.

We know x \* y is also a lower bound and it is the greatest lower bound.

Thus  $x \le x * y$ .

#### Proof of 1:

But x \* y is a lower bound of x and y. Thus  $x * y \le x$ . From  $x \le x * y$  and  $x * y \le x$ , we conclude that x \* y = x.

```
(only if part)
Assume x * y = x.
We know x * y is the greatest lower bound of x and y.
Thus x * y \le y.
Since x * y = x, we conclude that x \le y.
```

#### • Theorem:

Let  $(A, \leq)$  is a lattice. Then for every  $x, y, z \in A$  the following are true: 1. x \* x = x x + x = x idempotent laws 2. x \* y = y \* x x + y = y + x commutative laws 3. x \* (y \* z) = (x \* y) \* z x + (y + z) = (x + y) + z4. x \* (x + y) = x x + (x \* y) = x absorption laws Proof of 1

#### Proof of 1

Using the previous theorem and the fact that  $x \le x$ , we can easily show that x \* x = x and x + x = x.  $\Box$ 

#### • *Proof of 4*:

 $x \le x + y$  because x + y is the least upper bound of x and y. Again, using the previous theorem, x \* (x + y) = x.



Theorem: Let (A, \*, +) be an algebra such that the following four pairs of laws are satisfied:

 1. x \* x = x x + x = x 

 2. x \* y = y \* x x + y = y + x 

 3. x \* (y \* z) = (x \* y) \* z x + (y + z) = (x + y) + z 

 4. x \* (x + y) = x x + (x \* y) = x 

Then  $(A, \leq)$  is a lattice if, for every  $x, y \in A, x \leq y$  when x \* y = x and/or x + y = y.

Proof :

First, we want to show that  $\leq$  is a partial ordering.

#### Proof :

Since x \* x = x for every  $x \in A$ , we have  $x \le x$  and so  $\le$  is reflexive. If  $x \le y$  and  $y \le x$ , then x \* y = x and y \* x = y. But x \* y = y \* x is given, and so x = y. Thus  $\le$  is antisymmetric. If  $x \le y$  and  $y \le z$ , then x \* y = x and y \* z = y. Substituting y \* z for y in x \* y = x, we get x \* (y \* z) = x. By applying 3, we get (x \* y) \* z = x. Substituting x for x \* y, we get x \* z = x. Thus  $x \le z$  and so  $\le$  is transitive.

Since  $\leq$  is reflexive, antisymmetric, and transitive,  $\leq$  is a partial ordering.

#### Proof :

Now we have to show that there exists a g.l.b. and a l.u.b. of x and y for every  $x, y \in A$ .

Since x \* (x + y) = x for every  $x, y \in A$ , we have  $x \le x + y$ .

Similarly since y \* (y + x) = y, we have  $y \le y + x = x + y$ .

From  $x \le x + y$  and  $y \le x + y$ , we conclude that x + y is an upper bound of x and y.

If x + y is the only upper bound, then it is the l.u.b. of x and y.

If not, suppose there is another upper bound, say *z*, of *x* and *y*.

In this case,  $x \le z$  and  $y \le z$ , and thus x + z = z and y + z = z.

#### Proof :

Substituting y + z for z in the left hand side of x + z = z, we get x + (y + z) = z.

Using 3, we get (x + y) + z = z.

Hence,  $x + y \le z$  and thus x + y is the l.u.b. of x and y.

We can similarly show that x \* y is the g.l.b. of x and y.

Therefore,  $(A, \leq)$  is a lattice.

### Definition:

A lattice  $(A, \leq)$  is said to be a bounded lattice if the set *A* has a greatest element and a least element.

Example:



### Note:

- In a lattice,
  - the greatest element is usually denoted by '1', and
  - the least element is usually denoted by '0'.
- $\Box$  For all x,
  - $\bullet \ 0 \le x \to 0 * x = 0$
  - $x \le 1 \rightarrow x + 1 = 1$



Theorem: If (A, ≤) is a finite lattice then it is a bounded lattice.
 (The converse is not necessarily true.)

### Definition:

A bounded lattice  $(A, \leq)$  is said to be a complemented lattice if for every  $x \in A$  there is an  $\overline{x} \in A$  such that  $x * \overline{x} = 0$  and  $x + \overline{x} = 1$ .

#### • Example:

 $\Box$  Let *x* be a complement of *a*. Then,

$$\bullet a * x = 0 \rightarrow x = b, c, 0$$

$$\bullet a + x = 1 \rightarrow x = b, c, 1$$

$$\Rightarrow$$
  $\overline{a} = b$  or  $\overline{a} = c$ 



A complemented lattice

### Example:

- $b * x = 0 \rightarrow x = a, c, 0$
- $b + x = 1 \rightarrow x = 1$
- → There is no  $\overline{b}$ .



Not a complemented lattice

#### Definition:

A bounded lattice  $(A, \leq)$  is said to be a distributive lattice if for every  $x, y, z \in A$  the following are satisfied:

1. 
$$x * (y + z) = (x * y) + (x * z)$$
, and

**2.** 
$$x + (y * z) = (x + y) * (x + z)$$

#### Example:

• 
$$a * (b + c) = a * 1 = a$$

• 
$$(a * b) + (a * c) = 0 + 0 = 0$$

Not a distributive lattice





- Lattice and algebra:
  - □ From a lattice (A, ≤) we can define an algebra (A, \*, +), and vice versa.

lattice  $(A, \leq) \cdots (A, *, +)$  algebra



#### Boolean algebra:

The following four laws are satisfied:

(lattice)

- idempotent law
- commutative law
- associative law
- absorption law

 $\Box x + 0 = x \text{ and } x * 1 = x \text{ for every } x \in A.$  (bounded lattice)

□ For every  $x \in A$  there is  $\overline{x} \in A$  such that  $x * \overline{x} = 0$  and  $x + \overline{x} = 1$ .

(complemented lattice)

□ For every  $x, y, z \in A$  we have x \* (y + z) = (x \* y) + (x \* z) and x + (y \* z) = (x + y) \* (x + z) (distributive lattice)