
Partial Orderings, Lattices, 
and Boolean Algebra



Partial Orderings, Lattices, & Boolean Algebra 2

Partial Orderings

 Definition:
A binary relation R on a set is called a partial ordering if it is 
reflexive, antisymmetric, and transitive. 

 Example:
 “refines” is a partial ordering on the set of all the partitions.

 Notation:
≤ is used as a generic symbol for partial ordering.

 A = {1, 2, 3, 5, 6, 10, 15, 30}

“divides” relation: x divides y if x is a factor of y

 2 ≤ 6 and 3 ≤ 6 are true but 5 ≤ 6 is not true.
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Partial Orderings

 Definition:
When R is a partial ordering on a set A, the pair (A, R) is called a 
partially ordered set or a poset. 

 Examples of posets:
 (R, ≤)

 (the set of all the partitions, refines)

 (Z+, divides)

 (℘(A), ⊆)
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Partial Orderings

 Theorem:
If R is a partial ordering on a set A, then Rc is also a partial 
ordering on A.

 Definition:
Let R be a partial ordering on a set A and let X ⊆ A. The 
restriction of R on X, denoted R/X, is defined by

R/X = { (x, y) | x ∈ X ∧ y ∈ X ∧ (x, y) ∈ R}

 Example:
A = Z+ X = {1, 2, 3, 4, 5, 6, 7}

 divides/X = {(1, 1), (1, 2), . . . , (1, 7), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), 
(4, 4), (5, 5), (6, 6), (7,7)}
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Partial Orderings

 Theorem:
Let R be a partial ordering on a set A and let X ⊆ A. Then R/X is a 
partial ordering on X.

 Definition:
Let R be a partial ordering on a set A. If a, b ∈ A are such that 
either (a, b) ∈ R or (b, a) ∈ R then a and b are said to be 
comparable.

 Example:
A = {a, b, c} R = {(a, a), (b, b), (c, c), (a, b)}

 a and b are comparable.

 a and c are not comparable.   b and c are not comparable.
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Partial Orderings

 Definition:
Let R be a partial ordering on a set A such that every pair a, b ∈ A
is comparable. Then R is said to be a linear ordering (total 
ordering) and (A, R) is said to be a linearly ordered set (totally 
ordered set) or a chain.

 Definition:
A relation R on a set A is called a strict partial ordering if it is 
irreflexive, asymmetric, and transitive. 

 Example:
A = {a, b, c} R = {(a, a), (b, b), (c, c), (a, b)}

 R′ = {(a, b)} is a strict partial ordering
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Partial Orderings

 Notation:
< is used as a generic symbol for strict partial ordering.

< = { (x, y) | (x, y) ∈ ≤ ∧ x ≠ y} = ≤ – EA

 Definition:
Let < be a strict partial ordering on a set A. Then the covers
relation with respect to < on A, denoted by covers<, is defined as 
follows:

covers< = {(x, y) | y < x and there is no z such that y < z and z < x}
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Partial Orderings

 Example:
 “divides” relation on A = {1, 2, 3, 5, 6, 10, 15, 30}

 < = ≤ – EA

= {(1, 2), . . . , (1, 30), (2, 6), (2, 10), (2, 30), (3, 6), (3, 15), (3, 30), 
(5, 10), (5, 15), (5, 30), (6, 30), (15, 30), (10, 30)}

 covers< = {(2, 1), (3, 1), (5, 1), (6, 2), (6, 3), (10, 2), (10, 5), (15, 3), 
(15, 5), (30, 6), (30, 10), (30, 15)}

Hasse Diagram

30

10 156

32 5

1
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Partial Orderings

 Example:
 “divides” relation on A = {2, 3, 12, 18, 36, 72}

 < = { (2, 12), (2, 18), (2, 36), (2, 72), (3, 12), (3, 18), (3, 36), (3, 72), 
(12, 36), (12, 72), (18, 36), (18, 72), (36, 72)}

 covers< = {(12, 2), (12, 3), (18, 2), (18, 3), (36, 12), (36, 18), (72, 36)}

72

36

12 18

2 3

We can write ≤ from the Hasse diagram.



Partial Orderings, Lattices, & Boolean Algebra 10

Partial Orderings

 Example:
 “less than or equal to” relation on A = {1, 2, 3, 4, 5}

 This relation is a linear ordering.

 The poset is called a linearly ordered set, totally ordered set, or 
chain.

5

4

3

2

1
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Partial Orderings

 Example:
 Identity relation EA on A = {a, b, c}

 This relation is

 reflexive

 symmetric

 antisymmetric

 transitive

equivalence relation

partial ordering

Hasse diagram of EA:
ba c
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Bounds

 Definition:
Let (A, ≤) be a poset and let X ⊆ A. Then,

 a ∈ X is the greatest element of X if x ≤ a for every x ∈ X.

 a ∈ X is the least element of X if a ≤ x for every x ∈ X.

 a ∈ X is the maximal element of X if there is no x ∈ X such that    
a < x.

 a ∈ X is the minimal element of X if there is no x ∈ X such that     
x < a.
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Bounds

 Example:
 “divides” relation on A = {2, 3, 12, 18, 36, 72}

 X1 = {2, 3, 12}

 greatest element of X1: 12

 least element of X1: none

 X2 = {2, 3, 12, 18}

 greatest element of X2: none

 least element of X2: none

72

36

12 18

2 3



Partial Orderings, Lattices, & Boolean Algebra 14

Bounds

 Theorem:
Let (A, ≤) be a poset and let X ⊆ A. Then the greatest (least) 
element of X if it exists is unique.

 Proof :
Let there be two elements a and b which are the greatest 
elements of X.

Then, a ≤ b because b is the greatest element of X and a ∈ X.

Similarly, b ≤ a because a is the greatest element of X and b ∈ X.

From a ≤ b and b ≤ a, we conclude a = b because ≤ is symmetric.

�
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Bounds

 Example:
 “divides” relation on A = {2, 3, 12, 18, 36, 72}

 X1 = {2, 3, 12}

 maximal element of X1: 12

 minimal element of X1: 2, 3

 X2 = {2, 3, 12, 18}

 maximal element of X2: 12, 18

 minimal element of X2: 2, 3

72

36

12 18

2 3
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Bounds

 Theorem:
Let (A, ≤) be a poset and let X ⊆ A. If a ∈ X is the unique maximal 
(minimal) element of X then a is the greatest (least) element of X.

 Definition:
Let (A, ≤) be a poset and let X ⊆ A. Then,

 a ∈ A is the upper bound of X if x ≤ a for every x ∈ X.

 a ∈ A is the lower bound of X if a ≤ x for every x ∈ X.
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Bounds

 Example:
 “divides” relation on A = {2, 3, 12, 18, 36, 72}

 X = {12, 18, 36}

 greatest element: 36

 least element: none

 maximal element: 36

 minimal element: 12, 18

 upper bound: 36, 72

 lower bound: 2, 3

72

36

12 18

2 3
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Bounds

 Definition:
Let (A, ≤) be a poset and let X ⊆ A. Then,

 The least element of the set of upper bounds of X is called the 
least upper bound (LUB, supremum) of X.

 The greatest element of the set of lower bounds of X is called the 
greatest lower bound (GLB, infimum) of X.

 Example:
 “divides” relation on A = {2, 3, 12, 18, 36, 72}

 X = {12, 18, 36}

 LUB of X: 36

 GLB of X: none

72

36

12 18

2 3
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Bounds

 Example:
 Consider the poset (℘(A), ⊆) where A = {a, b, c}.

 Let Xi, Xj ∈℘(A). Then,

 LUB of {Xi, Xj} = Xi ∪ Xj

 GLB of {Xi, Xj} = Xi ∩ Xj

{a, b, c}

{a, c} {b, c}{a, b} 

{b}{a} {c}

∅
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Bounds

 Example:
 Consider the poset (A, divides) where A = {1, 2, 3, 5, 6, 10, 15, 30}.

 Let a, b ∈ A. Then,

 LUB of {a, b} = LCM (Least Common Multiple) of a and b

 GLB of {a, b} = GCD (Greatest Common Divisor) of a and b

30

10 156

32 5

1
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Isomorphism

 Definition:
Let (A, ≤) and (B, ≤′) be two posets and let f : A → B. The function 
f is said to be order preserving relative to ≤ and ≤′ if and only if 
for every a, b ∈ A if a ≤ b then f(a) ≤′ f(b).
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Isomorphism

 Example:
 f : A → B

A = {a1, a2, a3, a4} B = {b1, b2, b3, b4}

b4

b3

b2

b1

a4

a3a2

a1

 f(ai) = bi (1≤ i ≤ 4) is order preserving.

ai ≤ aj → f(ai) = bi ≤′ bj = f(aj) for all i, j.

 f –1: B → A is not order preserving.



Partial Orderings, Lattices, & Boolean Algebra 23

Isomorphism

 Definition:
Let (A, ≤) and (B, ≤′) be two posets and let f : A → B. If both f and 
f –1 is order preserving, then f is said to be an order isomorphism 
(or just isomorphism) between (A, ≤) and (B, ≤′) and the posets
are said to be order-isomorphic (or just isomorphic).

 Example:
30

10 156

32 5

1

{a, b, c}

{a, c} {b, c}{a, b} 

{b}{a} {c}

∅

⇔
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Lattices

 Definition:
A poset (A, ≤) is said to be a lattice if for every a, b ∈ A there is a 
LUB and a GLB.

 Examples:

d

b c

a

Lattice

GLB(b, c) = a LUB(b, c) = d

GLB(a, b) = a LUB(a, b) = b

a

fe

d

b

c

d

c

b

a

Not a lattice Lattice

b

a

c

Not a lattice

identity relation
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Lattices

 Operation:
 An n-ary operation on a set A is a function.

f : A × A × ⋅ ⋅ ⋅ × A → A
n

 Binary operation

f : A × A → A

 On a lattice, GLB and LUB are binary operations.

 GLB(a, b) = a * b

 LUB(a, b) = a + b
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Lattices

 Theorem:
If (A, ≤) is a lattice, then for any x, y ∈ A

1. x * y = x iff x ≤ y

2. x + y = y iff x ≤ y

 Proof of 1
(if part)

Assume x ≤ y.

Since x ≤ x and x ≤ y, x is a lower bound of x and y.

We know x * y is also a lower bound and it is the greatest lower 
bound.

Thus x ≤ x * y.



Partial Orderings, Lattices, & Boolean Algebra 27

Lattices

 Proof of 1:
But x * y is a lower bound of x and y. Thus x * y ≤ x.

From x ≤ x * y and x * y ≤ x, we conclude that x * y = x.

(only if part)

Assume x * y = x.

We know x * y is the greatest lower bound of x and y.

Thus x * y ≤ y.

Since x * y = x, we conclude that x ≤ y.

�
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Lattices

 Theorem:
Let (A, ≤) is a lattice. Then for every x, y , z ∈ A the following are true:

1.  x * x = x x + x = x idempotent laws

2.  x * y = y * x x + y = y + x commutative laws

3.  x * (y * z) = (x * y) * z x + (y + z) = (x + y) + z

associative laws

4.  x * (x + y) = x x + (x * y) = x absorption laws

 Proof of 1
Using the previous theorem and the fact that x ≤ x, we can easily 
show that x * x = x and x + x = x.  �
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Lattices

 Proof of 4:
x ≤ x + y because x + y is the least upper bound of x and y.

Again, using the previous theorem, x * (x + y) = x.

�
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Algebra

),,,,,,,,,,,,,( 212222111211 21 kknkknn OOOOOOOOOA 

set operations on A

binary operationsunary operations k-ary operations
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Algebra

 Theorem:  Let (A, *, +) be an algebra such that the following four 
pairs of laws are satisfied:

1. x * x = x x + x = x

2. x * y = y * x x + y = y + x

3. x * (y * z) = (x * y) * z x + (y + z) = (x + y) + z

4. x * (x + y) = x x + (x * y) = x

Then (A, ≤) is a lattice if, for every x, y ∈ A, x ≤ y when x * y = x
and/or x + y = y.

 Proof :
First, we want to show that ≤ is a partial ordering.
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Algebra

 Proof :
Since x * x = x for every x ∈ A, we have x ≤ x and so ≤ is reflexive.

If x ≤ y and y ≤ x, then x * y = x and y * x = y.

But x * y = y * x is given, and so x = y. Thus ≤ is antisymmetric.

If x ≤ y and y ≤ z, then x * y = x and y * z = y.

Substituting y * z for y in x * y = x, we get x * (y * z) = x.

By applying 3, we get (x * y) * z = x.

Substituting x for x * y, we get x * z = x.

Thus x ≤ z and so ≤ is transitive.

Since ≤ is reflexive, antisymmetric, and transitive, ≤ is a partial 
ordering.
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Algebra

 Proof :
Now we have to show that there exists a g.l.b. and a l.u.b. of x
and y for every x, y ∈ A.

Since x * (x + y) = x for every x, y ∈ A, we have x ≤ x + y.

Similarly since y * (y + x) = y, we have y ≤ y + x = x + y.

From x ≤ x + y and y ≤ x + y, we conclude that x + y is an upper 
bound of x and y.

If x + y is the only upper bound, then it is the l.u.b. of x and y.

If not, suppose there is another upper bound, say z, of x and y.

In this case, x ≤ z and y ≤ z, and thus x + z = z and y + z = z.
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Algebra

 Proof :
Substituting y + z for z in the left hand side of x + z = z, we get       
x + (y + z) = z.

Using 3, we get (x + y) + z = z.

Hence, x + y ≤ z and thus x + y is the l.u.b. of x and y.

We can similarly show that x * y is the g.l.b. of x and y.

Therefore, (A, ≤) is a lattice.

�
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Boolean Lattice and Boolean Algebra

 Definition:
A lattice (A, ≤) is said to be a bounded lattice if the set A has a 
greatest element and a least element.

 Example:

d

c

b

a

e

b c

a

d

greatest element

least element
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Boolean Lattice and Boolean Algebra

 Note:
 In a lattice,

 the greatest element is usually denoted by ‘1’, and

 the least element is usually denoted by ‘0’.

 For all x,

 0 ≤ x → 0 * x = 0

 x ≤ 1 → x + 1 = 1

 Theorem: If (A, ≤) is a finite lattice then it is a bounded lattice.

(The converse is not necessarily true.)
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Boolean Lattice and Boolean Algebra

 Definition:
A bounded lattice (A, ≤) is said to be a complemented lattice if for 
every x ∈ A there is an           such that               and              .

 Example:
 Let x be a complement of a. Then,

 a * x = 0 → x = b, c, 0

 a + x = 1 → x = b, c, 1

 or 

Ax∈ 0* =xx 1=+ xx

1

a b

0

c

ba = ca =

A complemented lattice
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Boolean Lattice and Boolean Algebra

 Example:
 b * x = 0 → x = a, c, 0

 b + x = 1 → x = 1

 There is no    .

1

fd

ba c

0

b

Not a complemented lattice
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Boolean Lattice and Boolean Algebra

 Definition:
A bounded lattice (A, ≤) is said to be a distributive lattice if for 
every x, y, z ∈ A the following are satisfied:

1. x * (y + z) = (x * y) + (x * z), and

2. x + (y * z) = (x + y) * (x + z)

 Example:
 a * (b + c) = a * 1 = a

 (a * b) + (a * c) = 0 + 0 = 0

 Not a distributive lattice

1

a b

0

c
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Boolean Lattice and Boolean Algebra

distributive latticecomplemented lattice

bounded lattice

lattice

poset

Boolean lattice Boolean lattices
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Boolean Lattice and Boolean Algebra

 Lattice and algebra:
 From a lattice (A, ≤) we can define an algebra (A, *, +), and vice 

versa.

lattice  (A, ≤)   (A, *, +)  algebra

Boolean lattice  (A, ≤)   (A, *, +,   , 0, 1) Boolean algebra

binary operations unary operation constants
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Boolean Lattice and Boolean Algebra

 Boolean algebra:
 The following four laws are satisfied: (lattice)

 idempotent law

 commutative law

 associative law

 absorption law

 x + 0 = x and x * 1 = x for every x ∈ A. (bounded lattice)

 For every x ∈ A there is such that               and              .

(complemented lattice)

 For every x, y, z ∈ A we have x * (y + z) = (x * y) + (x * z) and 
x + (y * z) = (x + y) * (x + z) (distributive lattice)

Ax∈ 0* =xx 1=+ xx
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