Equivalence Relations & Partitions

Definition:

A binary relation *R* on a set is called an equivalence relation if it is reflexive, symmetric, and transitive.

Example:

W: set of all words in English dictionary

R: "has the same first letter as" relation

Claim: *R* is an equivalence relation on the set *A*.

$$\begin{array}{l} (\forall w) \ w \in W \to (w, w) \in R \\ (\forall w_1)(\forall w_2) \ (w_1, w_2) \in R \to (w_2, w_1) \in R \\ (\forall w_1)(\forall w_2)(\forall w_3) \ (w_1, w_2) \in R \land (w_2, w_3) \in R \to (w_1, w_3) \in R \end{array}$$

More examples:

- $\Box E_A$ for a set A is an equivalence relation.
- \square *A* × *A* is an equivalence relation.
- \Box How many relations on A are equivalence relations?

$$\Box \ R_{k} = \{(x, y) \mid x, y \in \mathbb{Z}, \ x - y = n \cdot k, \ k \in \mathbb{Z}^{+}, \ n \in \mathbb{Z} \}$$

We say "x and y are equivalent modulo k."

When k = 3, $(7, 7) \in R_3$ $(7, 4) \in R_3 \ (7 - 4 = 1 \cdot 3) \rightarrow (4, 7) \in R_3 \ (4 - 7 = (-1) \cdot 3)$ $(4, 10) \in R_3 \land (10, 19) \in R_3 \rightarrow (4, 19) \in R_3$

Theorem:

If R_1 and R_2 are two equivalence relations on a set A then $R_1 \cap R_2$ is an equivalence relation.

Proof :

We need to show that $R_1 \cap R_2$ is reflexive, symmetric, and transitive.

(Reflexive)

Let $a \in A$. We must show that $(a, a) \in R_1 \cap R_2$.

Since R_1 and R_2 are equivalence relations, they must be reflexive and so $(a, a) \in R_1$ and $(a, a) \in R_2$.

Proof :

Therefore, $(a, a) \in R_1 \cap R_2$ and $R_1 \cap R_2$ is reflexive. (Symmetric)

Let $(a, b) \in R_1 \cap R_2$. Then, $(a, b) \in R_1$ and $(a, b) \in R_2$.

Since R_1 and R_2 are symmetric $(b, a) \in R_1$ and $(b, a) \in R_2$.

Therefore, $(b, a) \in R_1 \cap R_2$ and $R_1 \cap R_2$ is symmetric.

(Transitive)

Left as an exercise.

• A counter example for $R_1 \cup R_2$:

 $\Box A = \{a, b, c\}$

- \square $R_1 = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$ is an equivalence relation
- \square $R_2 = \{(a, a), (b, b), (c, c), (a, c), (c, a)\}$ is an equivalence relation

⇒
$$R_1 \cup R_2 = \{(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a)\}$$

is not transitive, and so is not an equivalence relation.

Theorem:

Let *R* be a non-empty relation on a set *A*. Then,

- \Box *tsr*(*R*) is an equivalence relation.
- □ If *R*' is any equivalence relation such that $R \subseteq R'$, then $tsr(R) \subseteq R'$.

Definition:

Let *R* be an equivalence relation on a set *A*. For each $x \in A$, the equivalence class of *x* with respect to *R*, denoted by $[x]_R$ is defined by

 $[x]_R = \{ y \in A \mid (x, y) \in R \}.$

Example:

W: set of all words in English dictionary

R: "has the same first letter as" relation

 $[dog]_R$: set of all the words that start with the letter 'd'

Theorem:

Let *R* be an equivalence relation on a set *A*. Then,

 $[a]_R = [b]_R$ iff $(a, b) \in R$

(Ex: $[dog]_R = [dummy]_R$)

• Proof :

(if part)

```
Assume (a, b) \in R.
```

Let $x \in [a]_R$.

Then, $(a, x) \in R$ and $(x, a) \in R$ because *R* is an equivalence relation and thus symmetric.

Proof :

From $(x, a) \in R$ and $(a, b) \in R$, we have $(x, b) \in R$ because *R* is an equivalence relation and thus transitive.

Then, $(b, x) \in R$ because *R* is an equivalence relation and thus symmetric. So, we have $x \in [b]_R$.

Therefore, $[a]_R \subseteq [b]_R$.

We can similarly show that $[b]_R \subseteq [a]_R$.

Therefore, $[a]_R = [b]_R$.

Proof :

```
(only if part)

Assume [a]_R = [b]_R.

Let x \in [a]_R. Then, x \in [b]_R.

Then, (a, x) \in R and (b, x) \in R.

Since (b, x) \in R and R is symmetric, we have (x, b) \in R.

From (a, x) \in R and (x, b) \in R, (a, b) \in R because R is transitive.

\Box
```

Theorem:

Let *R* be an equivalence relation on a set *A*. Then,

1. $a \in [a]_R$

2. Either $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$ but not both

$$3. \bigcup_{a \in A} [a]_R = A$$

Example: English dictionary

- $\Box \ \mathrm{dog} \in [\mathrm{dog}]_R$
- $\Box \ [\mathrm{dog}]_R = [\mathrm{dummy}]_R \qquad [\mathrm{dog}]_R \cap [\mathrm{cat}]_R = \emptyset$

```
\Box \bigcup_{a \in A} [a]_R = W \text{ (set of all words)}
```

• *Proof of* 2 :

Suppose $[a]_R \neq [b]_R$ and $[a]_R \cap [b]_R \neq \emptyset$.

Let *x* be an element of the nonempty set $[a]_R \cap [b]_R$.

Then, $x \in [a]_R$ and $x \in [b]_R$ and so $(a, x) \in R$ and $(b, x) \in R$.

But, $(x, b) \in R$ because *R* is symmetric.

From $(a, x) \in R$ and $(x, b) \in R$ we get $(a, b) \in R$ because *R* is transitive.

Then, $[a]_R = [b]_R$, which is a contradiction.

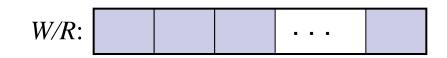
Definition:

Let *R* be an equivalence relation on a set *A*. The quotient set of *A* modulo *R*, denoted by A/R, is defined by

 $A/R = \{ [x]_R \mid x \in A \}$

Example:

□ W: English dictionary R: has the same first letter as $W/R = \{ \{ all words starting with a \}, \{ all words starting with b \}, ..., \{ all words starting with z \} \}$



Example:

- $\Box A = \{a, b, c\}$
- $\Box R = \{(a, a), (b, b), (c, c), (a, c), (c, a)\}$
- $\Box \ A/R = \{\{a, c\}, \{b\}\}\$

Definition:

Let *A* be a nonempty set and let π be a collection of nonempty subsets of *A* such that

1. If $X, Y \in \pi$ and $X \neq Y$ then $X \cap Y = \emptyset$

$$2. \bigcup_{X \in \pi} X = A$$

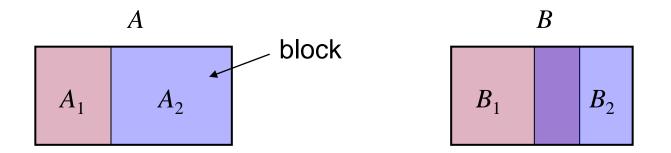
then π is called a partition of *A*.

Note:

 $\square \ \emptyset \notin \pi \text{ and } \pi \subset \wp(A)$

 \Box If only 2 holds, then it is called a cover.

• Example:



 $\{A_1, A_2\}$: partition

 $\{B_1, B_2\}$: cover, not a partition

Definition:

□ Let π be a partition on a set *A*. If π is finite then $|\pi|$ is called the rank of the partition *A*.

Theorem:

If *R* is an equivalence relation on a set *A*, then A/R is a partition of *A*.

Proof :

Let $X, Y \in A/R$.

Then, X and Y are equivalence classes.

We know that (1) either X = Y or $X \cap Y = \emptyset$ and (2) $\bigcup_{X \in A/R} X = A$.

This implies that A/R is a partition of A.

Definition:

Let π be a partition on a set *A*. The relation induced by the partition π , denoted by R_{π} , is defined as

 $R_{\pi} = \{ (x, y) \mid \exists S \ (S \in \pi \land x \in S \land y \in S) \}$

Example:

$$\Box A = \{a, b, c, d, e, f, g\}$$

$$\Box \pi = \{\{a, b, c\}, \{d, e\}, \{f, g\}\}$$

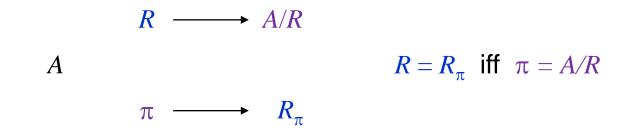
$$\Box R_{\pi} = \{(a, a), (b, b), \dots, (g, g), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d, e), (e, d), (f, g), (g, f)\}$$

• Theorem:

Let R_{π} be the relation induced by a partition π on a nonempty set *A*. Then,

1. R_{π} is an equivalence relation.

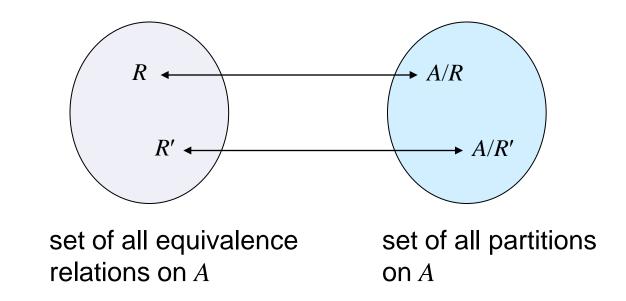
2.
$$A/R_{\pi} = \pi$$
.



• Theorem:

Let *R* be an equivalence relation on a nonempty set *A* and let π be a partition on the set. Then,

$$R = R_{\pi}$$
 iff $\pi = A/R$



• Theorem:

There exists a one-to-one correspondence between the set of all equivalence relations on a nonempty set A and the set of all partitions on A.

Definition:

Let π and π' be two partitions on a nonempty set *A*. Then π' is said to refine π (π' is a refinement of π) if every block of π' is a subset of some block of π .

• Example:

- $\Box A = \{a, b, c, d, e, f, g\}$
- $\Box \ \pi = \{\{a, b, c\}, \{d, e\}, \{f, g\}\}\$
- $\Box \pi' = \{\{a, b\}, \{c\}, \{d, e\}, \{f, g\}\}$
- $\Rightarrow \pi'$ is a refinement of π

Note:

 $\Box \ \pi_0 = \{\{a, b, c, d, e, f, g\}\}$

Every partition is a refinement of π_0 .

 $\square \ \pi_{\infty} = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}\}\}$

 $\pi_{\!\infty}$ is a refinement of every partition.

 \Box A partition refines itself.

Definition:

If a partition π' refines a partition π and if $\pi' \neq \pi$, then π' is called a proper refinement of π .

Definitions:

- □ Let π_1 and π_2 be two partitions on a nonempty set *A*. $\pi_1 \cdot \pi_2$ is a partition on *A* that refines both π_1 and π_2 and if π' is another partition that refines π_1 and π_2 then π' refines $\pi_1 \cdot \pi_2$.
- □ Let π_1 and π_2 be two partitions on a nonempty set *A*. $\pi_1 + \pi_2$ is a partition on *A* that is refined by both π_1 and π_2 and if π' is another partition that is refined by π_1 and π_2 then π' is refined by $\pi_1 + \pi_2$.

• Example:

$$\begin{array}{l} \square \ \pi_1 = \{\{a, b, c\}, \{d, e\}, \{f, g\}\} \\ \square \ \pi_2 = \{\{a, b, c, d\}, \{e\}, \{f, g\}\} \\ \square \ \pi_1 \cdot \pi_2 = \{\{a, b, c\}, \{d\}, \{e\}, \{f, g\}\} \\ \square \ \pi_3 = \{\{a, b\}, \{c\}, \{d\}, \{e\}, \{f, g\}\} \\ \pi_3 \neq \pi_1 \cdot \pi_2 \\ \pi_3 \text{ is a proper refinement of } \pi_1 \cdot \pi_2. \\ \square \ \pi_1 + \pi_2 = \{\{a, b, c, d, e\}, \{f, g\}\} \end{array}$$

Theorem:

The relation "refines" on the set of all the partitions on a nonempty set is reflexive, antisymmetric, and transitive.

• Theorem:

 \Box Let π_1 and π_2 be two partitions on a nonempty set *A*. Then

•
$$\pi_1 \cdot \pi_2 = A / (R_{\pi_1} \cap R_{\pi_2})$$

•
$$\pi_1 + \pi_2 = A / t(R_{\pi_1} \cup R_{\pi_2})$$
.

• Corollary:

Given two partitions π_1 and π_2 on a nonempty set *A*, there is a unique $\pi_1 \cdot \pi_2$ and a unique $\pi_1 + \pi_2$.