Relations (revisited)

Definitions: Let *R* be a relation on a set *A* (i.e., $R \in A \times A$).

- \square *R* is said to be reflexive if for every $x \in A$, $(x, x) \in R$.
- □ *R* is said to be irreflexive if for every $x \in A$, $(x, x) \notin R$.
- □ *R* is said to be symmetric if for every $(x, y) \in R$, $(y, x) \in R$, i.e., $(\forall x)(\forall y) ((x, y) \in R \rightarrow (y, x) \in R).$

 \square *R* is said to be antisymmetric if

 $(\forall x)(\forall y) \ ((x, y) \in R \land (y, x) \in R \rightarrow x = y).$

 \square *R* is said to be asymmetric if

 $(\forall x)(\forall y) ((x, y) \in R \rightarrow (y, x) \notin R).$

 \square *R* is said to be transitive if

 $(\forall x)(\forall y)(\forall z) ((x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R).$

• Example:

For $R = \{(a, b), (b, a)\}$ to be transitive, we need to add (a, a) and (b, b).

Note:

- \Box If *R* is asymmetric then *R* is irreflexive.
- \Box If *R* is asymmetric then *R* is antisymmetric.

Theorem: Let R be a relation on a set A. Then,

- \Box *R* is reflexive iff $E_A \subseteq R$.
- \square *R* is irreflexive iff $R \cap E_A = \emptyset$.
- \Box *R* is symmetric iff *R* = *R*^{*c*}.

Ex) $R = \{(a, b), (b, a)\}$ is symmetric.

Then, $R^c = \{(b, a), (a, b)\}$ and $R = R^c$.

 \Box *R* is antisymmetric iff $R \cap R^c \subseteq E_A$.

Ex) $R = \{(a, a), (a, b)\}$ is antisymmetric.

Then, $R^c = \{(a, a), (b, a)\}$ and $R \cap R^c = \{(a, a)\}.$

■ Theorem: Let *R* be a relation on a set *A*. Then,

 \square *R* is asymmetric iff $R \cap R^c = \emptyset$.

 \Box *R* is transitive iff $R \circ R \subseteq R$.

Ex) $R = \{(a, b), (b, c), (a, c)\}$ is transitive,

and $R \circ R = \{(a, c)\} \subseteq R$

Definition:

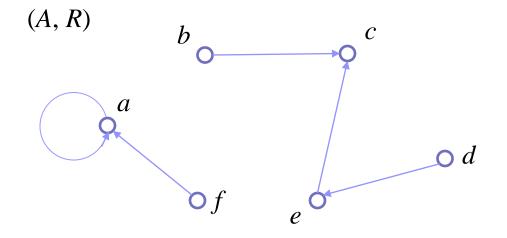
Let *R* be a binary relation on a set *A*. Then (A, R) is called a directed graph, or digraph.

Terminologies:

- For a graph (A, R),
- \Box A is called a set of nodes.
- \square *R* is called a set of arcs or a set of edges.

Example:

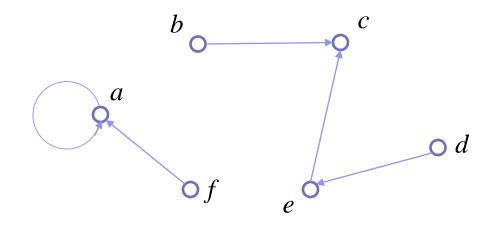
 $\Box A = \{a, b, c, d, e, f\}$ $\Box R = \{(a, a), (b, c), (d, e), (e, c), (f, a)\}$



Definitions: Let (*A*, *R*) be a digraph.

□ A sequence of nodes $x_0, x_1, ..., x_n$ is called a walk if $(x_i, x_{i+1}) \in R$ for all $0 \le i < n$, where *n* is the length of the walk.

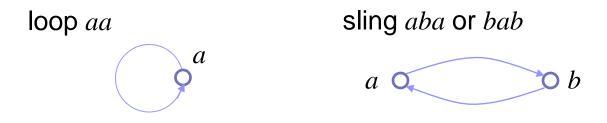
Ex) faaa is a walk. aaaf is not a walk. aaafe is not a walk.



A node is a walk of length 0.

Definitions: Let (*A*, *R*) be a digraph.

- \Box A walk x_0, x_1, \ldots, x_n is called a path if $x_i \neq x_j$ for $i \neq j, 0 \le i, j \le n$.
- □ A walk $x_0, x_1, ..., x_n$ is called a cycle if $x_i \neq x_j$ for $i \neq j$, $0 \le i, j \le n$ except that $x_0 = x_n$.
- \Box A cycle of length 1 is called a loop.
- \Box A cycle of length 2 is called a sling.



- **Theorem:** Let G = (A, R) be a directed graph.
 - \square *R* is reflexive iff *G* contains a loop at every node.
 - \square *R* is irreflexive iff *G* has no loop.
 - □ *R* is symmetric iff for every edge $(x, y) \in R$ there is a sling between the nodes *x* and *y*.
 - \square *R* is antisymmetric iff *G* has no sling.
 - \square *R* is asymmetric iff *G* has no sling and no loop.
 - \square *R* is transitive iff there is an edge between two nodes *x* and *y* whenever there is a path of length two between *x* and *y*.

Example:

Let $A = \{a, b, c\}$ and $R = \{(a, b), (c, a)\}$. To make R reflexive, we need to add at least three tuples (a, a), (b, b), and (c, c).

Definition: If R is a relation on a set A then the reflexive (symmetric, transitive) closure of R is a relation R' such that

1. R' is reflexive (symmetric, transitive)

2. $R \subseteq R'$

3. If R'' is another reflexive (symmetric, transitive) relation and $R \subseteq R''$, then $R' \subseteq R''$.

Notations:

Reflexive, symmetric, and transitive closure of *R* will be denoted by r(R), s(R), and t(R), respectively.

Theorem: Let R be a relation on a set A. Then,

(a)
$$r(R) = R \cup E_A$$

- (b) $s(R) = R \cup R^{c}$.
- (c) $t(R) = \bigcup_{i=1}^{\infty} R^i$.

- **Proof** of (a) $r(R) = R \cup E_A$
 - 1. $R \cup E_A$ is obviously reflexive.

2. $R \subseteq R \cup E_A$

3. Let R'' be a reflexive relation such that $R \subseteq R''$.

We need to show that $R \cup E_A \subseteq R''$.

Since R'' is reflexive, $E_A \subseteq R''$.

But $R \subseteq R''$, and thus $R \cup E_A \subseteq R''$.

Since $R \cup E_A$ satisfies all the three conditions in the definition of the reflexive closure of R, $R \cup E_A$ is the reflexive closure of R, i.e., $r(R) = R \cup E_A$. \Box

- **Proof** of (b) $s(R) = R \cup R^c$
 - 1. $R \cup R^c$ is symmetric because for every $(x, y) \in R \cup R^c$, $(y, x) \in R \cup R^c$.
 - **2.** $R \subseteq R \cup R^c$
 - 3. Let R'' be a symmetric relation on A such that $R \subseteq R''$.

We must show that $R \cup R^c \subseteq R''$.

 $R \subseteq R''$ is given.

Since R'' is symmetric, $R^c \subseteq R''$.

■ Let $(x, y) \in R^c$. Then $(x, y) \in R$. Since $R \subseteq R''$, $(x, y) \in R''$. But, R'' is symmetric and so $(x, y) \in R''$. Therefore, $R^c \subseteq R''$.

Lemma: Let *R* be a relation on a set *A*. Then,

 $R^n \subseteq t(R)$, for all $n \ge 1$.

Proof :

(Basis Step) For n = 1,

 $R \subseteq t(R)$ by the definition of t(R).

(Inductive step)

Let $R^n \subseteq t(R)$.

We want to prove that $R^{n+1} \subseteq t(R)$.

```
Note that R^{n+1} = R \circ R^n.
```

■ Proof :

Since $R \subseteq t(R)$, $R^n \subseteq t(R)$, and t(R) is transitive, $R \circ R^n \subseteq t(R)$.

• Let $(x, z) \in R \circ R^n$.

There must exist a *y* such that $(x, y) \in R$ and $(y, z) \in R^n$. But $R \subseteq t(R)$ and $R^n \subseteq t(R)$.

Hence $(x, y) \in t(R)$ and $(y, z) \in t(R)$.

Since t(R) is transitive, $(x, z) \in t(R)$.

Therefore, $R \circ R^n \subseteq t(R)$.

Therefore, $R^n \subseteq t(R)$ for all $n \ge 1$.

• **Proof** of (c) $t(R) = \bigcup_{i=1}^{\infty} R^i$ of the above theorem

By the previous lemma $R^n \subseteq t(R)$ for all $n \ge 1$.

Thus, $\bigcup_{i=1}^{\infty} R^i \subseteq t(R)$.

Now we must show that $t(R) \subseteq \bigcup_{i=1}^{\infty} R^i$.

Obviously, $R \subseteq \bigcup_{i=1}^{\infty} R^i$.

All that remains to be shown now is that $\bigcup_{i=1}^{\infty} R^i$ is transitive.

Let $(x, y) \in \bigcup_{i=1}^{\infty} R^i$ and $(y, z) \in \bigcup_{i=1}^{\infty} R^i$.

Since $(x, y) \in \bigcup_{i=1}^{\infty} R^i$, there must exist an *s* such that $(x, y) \in R^s$.

Similarly, there must exist a *t* such that $(y, z) \in R^t$.

Then, $(x, z) \in R^{s+t}$ and $R^{s+t} \subseteq \bigcup_{i=1}^{\infty} R^{i}$.

```
■ Proof of (c) of the above theorem

Thus, (x, z) \in \bigcup_{i=1}^{\infty} R^{i}.

Therefore, \bigcup_{i=1}^{\infty} R^{i} is transitive.
```

■ Theorem: Let *R* be a binary relation. Then,

- (a) *R* is reflexive iff r(R) = R.
- (b) *R* is symmetric iff s(R) = R.
- (c) *R* is transitive iff t(R) = R.

Proof of (a)

(if part): *R* is reflexive if r(R) = R.

Assume r(R) = R.

Since the reflexive closure is reflexive, *R* is obviously reflexive.

(only if part): *R* is reflexive only if r(R) = R.

Assume *R* is reflexive.

Since $R \subseteq R$ and R is reflexive, $r(R) \subseteq R$ by the definition of the reflexive closure.

But $R \subseteq r(R)$ also by the definition of the reflexive closure.

Therefore, R = r(R).

• Theorem: Let *R* be a binary relation.

- (a) If R is reflexive then so are s(R) and t(R).
- (b) If R is symmetric then so are r(R) and t(R).
- (c) If R is transitive then so is r(R).
- An Example of an *R* which is transitive and s(R) is not: $R = \{(a, b)\}$ is transitive.

 $s(R) = R \cup R^c = \{(a, b), (b, a)\}$ is not transitive.

Proof of (a)

Assume *R* is a reflexive relation.

We prove that s(R) is reflexive.

Since *R* is reflexive, $E \subseteq R$.

We know by the definition of s(R) that $R \subseteq s(R)$.

```
Thus, E \subseteq s(R).
```

Therefore, s(R) is reflexive.

We can similarly show that t(R) is reflexive.

• Theorem: Let *R* be a binary relation.

- (a) rs(R) = sr(R).
- (b) rt(R) = tr(R).
- (C) $st(R) \subseteq ts(R)$.

Proof of (a)

 $rs(R) = r(R \cup R^{c}) = R \cup R^{c} \cup E = R \cup R^{c} \cup E \cup E$ $= R \cup R^{c} \cup E \cup E^{c} = (R \cup E) \cup (R^{c} \cup E^{c})$ $= (R \cup E) \cup (R \cup E)^{c}$ $= s(R \cup E)$ $= sr(R) \square$

• Lemma: Let R_1 and R_2 be two relations.

If $R_1 \subseteq R_2$, then $s(R_1) \subseteq s(R_2)$ and $t(R_1) \subseteq t(R_2)$.

• **Proof** of (c)
$$st(R) \subseteq ts(R)$$

 $R \subseteq s(R)$ by the definition of the closure.

 $t(R) \subseteq ts(R)$ by the above lemma.

 $st(R) \subseteq sts(R)$ again by the above lemma.

Since s(R) is symmetric, ts(R) is symmetric by the previous theorem.

• **Proof** of (c) $st(R) \subseteq ts(R)$

Since ts(R) is symmetric, it must be equal to its symmetric closure, by one of the previous theorems.

Hence, sts(R) = st(R).

Therefore $st(R) \subseteq ts(R)$.

• A counter example for $ts(R) \subseteq st(R)$.

Let $R = \{(a, b)\}$. Then, $t(R) = \{(a, b)\}$ and $st(R) = \{(a, b), (b, a)\}$. Also, $s(R) = \{(a, b), (b, a)\}$ and $ts(R) = \{(a, b), (b, a), (a, a), (b, b)\}$. We can see that $ts(R) \notin st(R)$.

Definitions:

- □ A set *A* has a cardinality *n*, denoted by |A| = n, if there exists a bijection from the set of the first *n* positive integers to *A*.
- □ A set is said to be finite if it has a cardinality n, where n is a positive integer.
- A set is said to be infinite if it is not finite.
- □ A set *A* is said to be denumerable or countably infinite if there exists a bijection from the set of all positive integers to the set *A*.
- □ A set is said to be countable if it is finite or countably infinite.

Example:

N = {0, 1, 2, 3,...}. Let f : Z⁺ → N, where f(a) = a - 1 for $a \in Z^+$. Since f is a bijection, N is countably infinite.

• Example:

- \Box **E** = {0, 2, 4, 6,...}.
- □ Let $f: \mathbb{Z}^+ \to \mathbb{E}$, where f(a) = 2(a-1) for $a \in \mathbb{Z}^+$.
- \Box Since *f* is a bijection, **E** is countably infinite.

- **Theorem:** The set [0, 1] is not denumerable.
- Proof (by a diagonalization argument)

Suppose the set [0, 1] is denumerable.

Then, there exists a bijection $f: \mathbb{Z}^+ \rightarrow [0, 1]$.

Suppose we enumerate f as shown in the following table.

\mathbf{Z}^+	[0, 1]
1	$0 . x_{11} x_{12} x_{13} \cdots$
2	0 . $x_{21} x_{22} x_{23} \cdots$
3	0 . $x_{31} x_{32} x_{33} \cdots$
•	•

Proof (by a diagonalization argument)

Now, take a number 0. $y_1 y_2 y_3 \cdots$, where $y_i \neq x_{ii}$.

This number is not the same as any number in the table.

So f is not surjective, which is a contradiction.

Therefore, there does not exist a bijection from \mathbb{Z}^+ to [0, 1], and so [0, 1] is not denumerable.

Implications:

- \Box We can see that $|\mathbf{Z}^+| \neq |\mathbf{R}|$.
 - In fact, $|\mathbf{Z}^+| < |\mathbf{R}|$.

Is there anything in-between? That is still an open question.

$$\square |\mathbf{R}| = |\wp(\mathbf{Z}^+)| = 2^{|\mathbf{Z}^+|}$$

 $\square 2^{|\mathbf{R}|}$ is yet another infinity.

Theorem:

Let *A* be an infinite set and let $\wp(A)$ be the power set of *A*. Then, $|A| < |\wp(A)| = 2^{|A|}.$