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Properties of Relations

 Definitions: Let R be a relation on a set A (i.e., R ∈ A × A).

 R is said to be reflexive if for every x ∈ A, (x, x) ∈ R.

 R is said to be irreflexive if for every x ∈ A, (x, x) ∈ R.

 R is said to be symmetric if for every (x, y) ∈ R, (y, x) ∈ R, i.e., 
(∀x)(∀y) ((x, y) ∈ R → (y, x) ∈ R).

 R is said to be antisymmetric if
(∀x)(∀y) ((x, y) ∈ R ∧ (y, x) ∈ R → x = y).

 R is said to be asymmetric if
(∀x)(∀y) ((x, y) ∈ R → (y, x) ∈ R).

 R is said to be transitive if
(∀x)(∀y)(∀z) ((x, y) ∈ R ∧ (y, z) ∈ R → (x, z) ∈ R).
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Properties of Relations

 Example:
For R = {(a, b), (b, a)} to be transitive, we need to add (a, a) and 
(b, b).

 Note:
 If R is asymmetric then R is irreflexive.

 If R is asymmetric then R is antisymmetric.



Equivalence Relations & Partitions 4

Properties of Relations

 Theorem: Let R be a relation on a set A. Then,

 R is reflexive iff EA ⊆ R.

 R is irreflexive iff R ∩ EA = ∅.

 R is symmetric iff R = Rc.

Ex) R = {(a, b), (b, a)} is symmetric.

Then, Rc = {(b, a), (a, b)} and R = Rc.

 R is antisymmetric iff R ∩ Rc ⊆ EA.

Ex) R = {(a, a), (a, b)} is antisymmetric.

Then, Rc = {(a, a), (b, a)} and R ∩ Rc = {(a, a)}.
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Properties of Relations

 Theorem:  Let R be a relation on a set A. Then,

 R is asymmetric iff R ∩ Rc = ∅.

 R is transitive iff R ◦ R ⊆ R.

Ex) R = {(a, b), (b, c) , (a, c)} is transitive, 

and R ◦ R = {(a, c)} ⊆ R
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Relations and Graphs

 Definition:
Let R be a binary relation on a set A. Then (A, R) is called a 
directed graph, or digraph.

 Terminologies:
For a graph (A, R),

 A is called a set of nodes.

 R is called a set of arcs or a set of edges.
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Relations and Graphs

 Example:
 A = {a, b, c, d, e, f }

 R = {(a, a), (b, c) , (d, e) , (e, c) , (f , a)}

a

b

f

c

d

e

(A, R)



Equivalence Relations & Partitions 8

Relations and Graphs

 Definitions: Let (A, R) be a digraph.

 A sequence of nodes x0, x1,…, xn is called a walk if (xi, xi+1) ∈ R for 
all 0 ≤ i < n, where n is the length of the walk.

Ex)   faaa aaaf aaafe

A node is a walk of length 0.

is a walk. is not a walk. is not a walk.

a

b

f

c

d

e
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Relations and Graphs

 Definitions: Let (A, R) be a digraph.

 A walk x0, x1,…, xn is called a path if xi ≠ xj for i ≠ j, 0 ≤ i, j ≤ n.

 A walk x0, x1,…, xn is called a cycle if xi ≠ xj for i ≠ j, 0 ≤ i, j ≤ n
except that x0 = xn.

 A cycle of length 1 is called a loop.

 A cycle of length 2 is called a sling.

a b

sling aba or bab
a

loop aa
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Relations and Graphs

 Theorem: Let G = (A, R) be a directed graph.

 R is reflexive iff G contains a loop at every node.

 R is irreflexive iff G has no loop.

 R is symmetric iff for every edge (x, y) ∈ R there is a sling 
between the nodes x and y.

 R is antisymmetric iff G has no sling.

 R is asymmetric iff G has no sling and no loop.

 R is transitive iff there is an edge between two nodes x and y
whenever there is a path of length two between x and y.
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Closures

 Example:
Let A = {a, b, c} and R = {(a, b), (c , a)}. To make R reflexive, we 
need to add at least three tuples (a, a), (b, b), and (c, c).

 Definition: If R is a relation on a set A then the reflexive (symmetric, 
transitive) closure of R is a relation R′ such that

1. R′ is reflexive (symmetric, transitive)

2. R ⊆ R′

3. If R′′ is another reflexive (symmetric, transitive) relation and        
R ⊆ R′′, then R′ ⊆ R′′.
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Closures

 Notations:
Reflexive, symmetric, and transitive closure of R will be denoted 
by r(R), s(R), and t(R), respectively.

 Theorem: Let R be a relation on a set A. Then,

(a) r(R) = R ∪ EA.

(b) s(R) = R ∪ Rc.

(c) t(R) = .i
i R∞
=1
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Closures

 Proof of (a) r(R) = R ∪ EA

1. R ∪ EA is obviously reflexive.

2. R ⊆ R ∪ EA

3. Let R′′ be a reflexive relation such that R ⊆ R′′.

We need to show that R ∪ EA ⊆ R′′.

Since R′′ is reflexive, EA ⊆ R′′.

But R ⊆ R′′, and thus R ∪ EA ⊆ R′′.

Since R ∪ EA satisfies all the three conditions in the definition of 
the reflexive closure of R, R ∪ EA is the reflexive closure of R, i.e., 
r(R) = R ∪ EA.  �
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Closures

 Proof of (b) s(R) = R ∪ Rc

1. R ∪ Rc is symmetric because for every (x, y) ∈ R ∪ Rc,                
(y, x) ∈ R ∪ Rc.

2. R ⊆ R ∪ Rc

3. Let R′′ be a symmetric relation on A such that R ⊆ R′′.

We must show that R ∪ Rc ⊆ R′′.

R ⊆ R′′ is given.

Since R′′ is symmetric, Rc ⊆ R′′.

 Let (x, y) ∈ Rc. Then (x, y) ∈ R. Since R ⊆ R′′, (x, y) ∈ R′′. But, 
R′′ is symmetric and so (x, y) ∈ R′′. Therefore, Rc ⊆ R′′. �
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Closures

 Lemma: Let R be a relation on a set A. Then,

Rn ⊆ t(R), for all n ≥ 1.

 Proof :
(Basis Step)  For n = 1,

R ⊆ t(R) by the definition of t(R).

(Inductive step)

Let Rn ⊆ t(R).

We want to prove that Rn+1 ⊆ t(R).

Note that Rn+1 = R ◦ Rn.
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Closures

 Proof :
Since R ⊆ t(R), Rn ⊆ t(R), and t(R) is transitive, R ◦ Rn ⊆ t(R).

 Let (x, z) ∈ R ◦ Rn.

There must exist a y such that (x, y) ∈ R and (y, z) ∈ Rn.

But R ⊆ t(R) and Rn ⊆ t(R).

Hence (x, y) ∈ t(R) and (y, z) ∈ t(R).

Since t(R) is transitive, (x, z) ∈ t(R).

Therefore, R ◦ Rn ⊆ t(R).

Therefore, Rn ⊆ t(R) for all n ≥ 1.  �
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Closures

 Proof of (c) t(R) = of the above theorem

By the previous lemma Rn ⊆ t(R) for all n ≥ 1.

Thus,            ⊆ t(R).

Now we must show that t(R) ⊆ .

Obviously, R ⊆ .

All that remains to be shown now is that            is transitive.

Let (x, y) ∈ and (y, z) ∈ .

Since (x, y) ∈ , there must exist an s such that (x, y) ∈ Rs.

Similarly, there must exist a t such that (y, z) ∈ Rt.

Then, (x, z) ∈ Rs+t and Rs+t ⊆ .

i
i R∞
=1

i
i R∞
=1

i
i R∞
=1

i
i R∞
=1

i
i R∞
=1

i
i R∞
=1 i

i R∞
=1

i
i R∞
=1

i
i R∞
=1
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Closures

 Proof of (c) of the above theorem

Thus, (x, z) ∈ .

Therefore,            is transitive.

�

 Theorem: Let R be a binary relation. Then,

(a) R is reflexive iff r(R) = R.

(b) R is symmetric iff s(R) = R.

(c) R is transitive iff t(R) = R.

i
i R∞
=1
i

i R∞
=1
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Closures

 Proof of (a)

(if part):  R is reflexive if r(R) = R.

Assume r(R) = R.

Since the reflexive closure is reflexive, R is obviously reflexive.

(only if part):  R is reflexive only if r(R) = R.

Assume R is reflexive.

Since R ⊆ R and R is reflexive, r(R) ⊆ R by the definition of the 
reflexive closure.

But R ⊆ r(R) also by the definition of the reflexive closure.

Therefore, R = r(R).  �
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Closures

 Theorem: Let R be a binary relation.

(a) If R is reflexive then so are s(R) and t(R).

(b) If R is symmetric then so are r(R) and t(R).

(c) If R is transitive then so is r(R).

 An Example of an R which is transitive and s(R) is not:

R = {(a, b)} is transitive.

s(R) = R ∪ Rc = {(a, b), (b, a)} is not transitive.
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Closures

 Proof of (a)

Assume R is a reflexive relation.

We prove that s(R) is reflexive.

Since R is reflexive, E ⊆ R.

We know by the definition of s(R) that R ⊆ s(R).

Thus, E ⊆ s(R).

Therefore, s(R) is reflexive.

We can similarly show that t(R) is reflexive.

�
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Closures

 Theorem: Let R be a binary relation.

(a) rs(R) = sr(R).

(b) rt(R) = tr(R).

(c) st(R) ⊆ ts(R).

 Proof of (a)

rs(R) = r(R ∪ Rc) = R ∪ Rc ∪ E = R ∪ Rc ∪ E ∪ E

= R ∪ Rc ∪ E ∪ Ec = (R ∪ E) ∪ (Rc ∪ Ec)

= (R ∪ E) ∪ (R ∪ E)c

= s(R ∪ E)

= sr(R)  �
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Closures

 Lemma: Let R1 and R2 be two relations.

If R1 ⊆ R2, then s(R1) ⊆ s(R2) and t(R1) ⊆ t(R2).

 Proof of (c) st(R) ⊆ ts(R)

R ⊆ s(R) by the definition of the closure.

t(R) ⊆ ts(R) by the above lemma.

st(R) ⊆ sts(R) again by the above lemma.

Since s(R) is symmetric, ts(R) is symmetric by the previous 
theorem.
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Closures

 Proof of (c) st(R) ⊆ ts(R)

Since ts(R) is symmetric, it must be equal to its symmetric 
closure, by one of the previous theorems.

Hence, sts(R) = st(R).

Therefore  st(R) ⊆ ts(R).  �

 A counter example for ts(R) ⊆ st(R).

Let R = {(a, b)}.

Then, t(R) = {(a, b)} and st(R) = {(a, b), (b, a)}.

Also, s(R) = {(a, b), (b, a)} and ts(R) = {(a, b), (b, a) , (a, a) , (b, b)}.

We can see that ts(R) ⊆ st(R).
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Cardinality

 Definitions:
 A set A has a cardinality n, denoted by |A| = n, if there exists a 

bijection from the set of the first n positive  integers to A.

 A set is said to be finite if it has a cardinality n, where n is a 
positive integer.

 A set is said to be infinite if it is not finite.

 A set A is said to be denumerable or countably infinite if there 
exists a bijection from the set of all positive integers to the set A.

 A set is said to be countable if it is finite or countably infinite.
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Cardinality

 Example:
N = {0, 1, 2, 3,…}.

Let f : Z+ → N, where f (a) = a – 1 for a ∈ Z+.

Since f is a bijection, N is countably infinite.

 Example:
 E = {0, 2, 4, 6,…}.

 Let f : Z+ → E, where f (a) = 2(a – 1) for a ∈ Z+.

 Since f is a bijection, E is countably infinite.
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Cardinality

 Theorem: The set [0, 1] is not denumerable.

 Proof (by a diagonalization argument)

Suppose the set [0, 1] is denumerable. 

Then, there exists a bijection f : Z+ → [0, 1]. 

Suppose we enumerate f as shown in the following table.

[0, 1]Z+ 

0  .  x11 x12 x13 ⋅ ⋅ ⋅1
0  .  x21 x22 x23 ⋅ ⋅ ⋅2
0  .  x31 x32 x33 ⋅ ⋅ ⋅3

⋅
⋅

⋅
⋅
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Cardinality

 Proof (by a diagonalization argument)
Now, take a number 0. y1 y2 y3 ⋅ ⋅ ⋅, where yi ≠ xii.

This number is not the same as any number in the table.

So f is not surjective, which is a contradiction.

Therefore, there does not exist a bijection from Z+ to [0, 1],

and so [0, 1] is not denumerable.

�
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Cardinality

 Implications:
 We can see that |Z+| ≠ |R|.

In fact, |Z+| < |R|.

Is there anything in-between?   That is still an open question.

 |R| = |℘(Z+)| = 

 2|R| is yet another infinity.

 Theorem:
Let A be an infinite set and let ℘(A) be the power set of A. Then,

|A| < |℘(A) | = 2|A|.

|Z| +

2
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