

Definition:

A function *f* from a set *A* to a set *B*, denoted by $f : A \rightarrow B$, is a relation between *A* and *B* in which for every $a \in A$ there is a unique $b \in B$ such that $(a, b) \in f$.

Example:

 $A = \{a, b, c\}, B = \{\alpha, \beta, \gamma, \delta\}$ $R_1 = \{(a, \alpha), (a, \delta), (b, \gamma)\} \text{ is not a function.}$ $R_2 = \{(a, \alpha), (b, \alpha), (c, \delta)\} \text{ is a function.}$

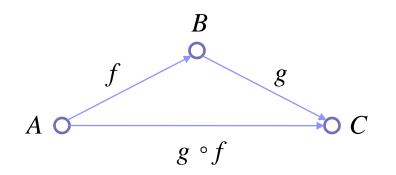
Note:

- □ For a function $f: A \to B$, $(c, \delta) \in f$ is also written as $f(c) = \delta$ where *c* is called the argument and δ is called the value.
- □ As a relation, $(c, \delta) \in f$ is sometimes written as $c f \delta$.
- □ Domain $\mathcal{D}(f) = A$ and range $\mathcal{R}(f) \subseteq B$ (*B* : codomain of *f*).
- □ The order of function composition is the reverse of relations.

Let
$$A = \{a, b, c\}, B = \{\alpha, \beta\}, \text{ and } C = \{x, y, z\}.$$

Let $f = \{(a, \beta), (b, \beta), (c, \alpha)\}$ and $g = \{(\alpha, x), (\beta, z)\}.$
Then, $g \circ f = \{(a, z), (b, z), (c, x)\}.$ (not written as $f \circ g$)
 $g \circ f(a) = g(f(a)) = z.$

Commutative Diagram



Theorem:

If $f: A \to B$ and $g: B \to C$ then $g \circ f: A \to C$.

• Proof :

 $g \circ f$ is obviously a relation between A and C.

To prove that for every $a \in A$ there is a unique $c \in C$ such that $(a, c) \in g \circ f$.

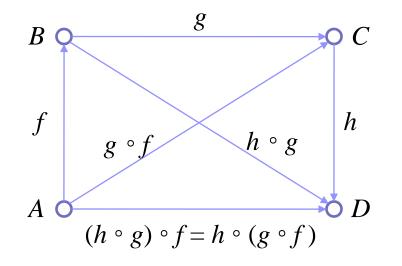
For every $a \in A$ there is a unique $b \in B$ such that $(a, b) \in f$ because f is a function.

But for $b \in B$ there is a unique $c \in C$ such that $(b, c) \in g$ because g is a function.

```
Therefore, g \circ f : A \to C. \Box
```

Theorem:

Let $f: A \to B$, $g: B \to C$, and $h: C \to D$. Then $(h \circ g) \circ f = h \circ (g \circ f)$. (i.e., function composition is associative.)



Notation:

 B^A denote the set of all functions from A to B.

Suppose |A| = n and |B| = m. Then, $|B^A| = m^n$.

• **Definitions:** Let $f: A \rightarrow B$.

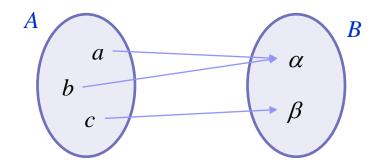
 \Box *f* is said to be surjective if $\mathcal{R}(f) = B$.

□ *f* is said to be injective if for every $(a, b) \in f$ and $(a', b) \in f$, a = a'.

 \Box If *f* is both surjective and injective then it is called bijective.

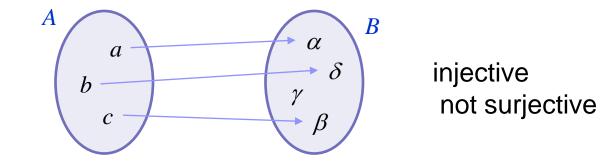
Terminologies:

is a surjection ··· is surjective ··· is onto
is an injection ··· is injective ··· is one-to-one
is a bijection ··· is bijective ··· is one-to-one and onto



surjective not injective

Terminologies:



□ Note that for a function $f: A \rightarrow B$ to be bijective, A and B should have the same cardinality.

• Theorem: Let $f: A \to B$ and $g: B \to C$.

- (1) If f and g are surjective then $g \circ f$ is surjective.
- (2) If f and g are injective then $g \circ f$ is injective.
- (3) If f and g are bijective then $g \circ f$ is bijective.

• *Proof* of (2)

Note that $g \circ f : A \to C$. Let (a, c) and (a', c) be elements of $g \circ f$. Since $(a, c) \in g \circ f$, there must be a $b \in B$ such that $(a, b) \in f$ and $(b, c) \in g$.

• *Proof* of (2)

Similarly for $(a', c) \in g \circ f$, there must be a $b' \in B$ such that $(a', b') \in f$ and $(b', c) \in g$. But b = b' because $(b, c) \in g$, $(b', c) \in g$, and g is injective. Since $(a, b) \in f$, $(a', b') \in f$, b = b', and f is injective, we get a = a'.

• Theorem: Let $f: A \to B$ and $g: B \to C$.

- \Box If $g \circ f$ is surjective then g is surjective.
- \Box If $g \circ f$ is injective then f is injective.
- □ If $g \circ f$ is bijective then g is surjective and f is injective.

Definition:

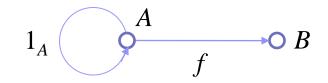
The function $1_A : A \to A$, denoted by $1_A(a) = a$ for all $a \in A$, is called the identity function for *A*.

• Example:

If $A = \{a, b, c\}$ then the identity function 1_A for A is $\{(a, a), (b, b), (c, c)\}.$

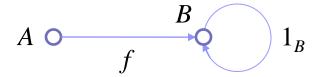
Right and left identities: Let $f: A \rightarrow B$.

 \Box $f \circ 1_A = f$, where 1_A is called the right identity function of f.



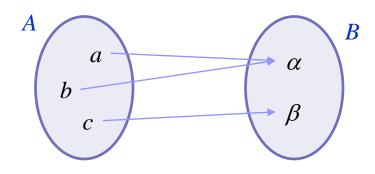
 $(1_A \circ f = f? \cdots \text{ meaningless if } A \neq B)$

 \Box 1_B \circ f = f, where 1_B is called the left identity function of f.



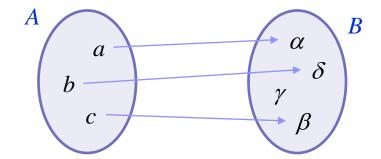
Inverse function:

Let $f: A \rightarrow B$. Then the converse of f is $f^c = \{(y, x) \mid (x, y) \in f\}$.



 $f_1: A \to B$

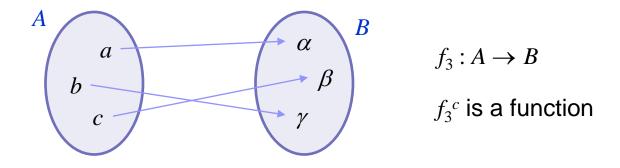
 f_1^{c} is not a function



 $f_2: A \to B$

 $f_2^{\ c}$ is not a function

Inverse function:

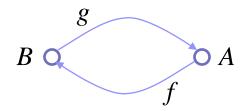


The converse of a function is not necessarily a function.

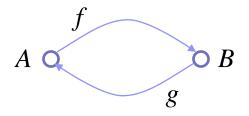
If there exists a converse which is a function, it is called the inverse of *f*, and is denoted by f^{-1} .

• Right and left inverses: Let $f: A \to B$ and $g: B \to A$.

 \Box If $f \circ g = 1_B$, then g is called the right inverse of f.



 \Box If $g \circ f = 1_A$, then g is called the left inverse of f.



• Theorem: Let $f: A \rightarrow B$.

- (1) f has a left inverse if and only if f is injective.
- (2) f has a right inverse if and only if f is surjective.
- (3) f has a left and right inverse if and only if f is bijective.
- (4) If f is bijective then the left inverse of f is equal to the right inverse of f.
- *Proof* of (1)

(if part): f has a left inverse if f is injective.

Assume that f is injective.

Let $g: B \rightarrow A$ be defined as follows.

■ *Proof* of (1)

For $b \in B$, $g(b) = \begin{cases} a & \text{if } b \in \mathcal{R}(f) \text{ and } f(a) = b \\ c & \text{otherwise, where } c \text{ is a unique element of } A \end{cases}$ Obviously g is a relation and $\mathcal{D}(g) = B$. Let $(x, y) \in g$ and $(x, z) \in g$.

If $x \notin \mathcal{R}(f)$, then y = z by the lower part of g's definition.

If
$$x \in \mathcal{R}(f)$$
, then $f(y) = x$ and $f(z) = x$.

But since f is injective, y = z.

Hence, when $(x, y) \in g$ and $(x, z) \in g$, y = z.

Thus, g is a function.

■ *Proof* of (1)

Note that $g \circ f : A \to A$. Let $a \in A$. Then $g \circ f(a) = g(f(a)) = a$ by the top part of g's definition. Hence, $g \circ f = 1_A$. Therefore, g is the left inverse of f.

(only if part): f has a left inverse only if f is injective.

Assume that f has a left inverse.

Let $g: B \to A$ be a left inverse of f, i.e., $g \circ f = 1_A$.

We want to prove that f is injective.

■ *Proof* of (1)

Assuming $(x, y) \in f$ and $(z, y) \in f$, we have to show x = z. $x = 1_A(x) = g \circ f(x) = g(f(x)) = g(y) = g(f(z)) = g \circ f(z) = 1_A(z) = z$ Hence, f is injective.

• *Proof* of (4)

Since f is surjective, it has a right inverse.

Let that inverse be $f_R: B \to A$.

Since f is injective, it has a left inverse.

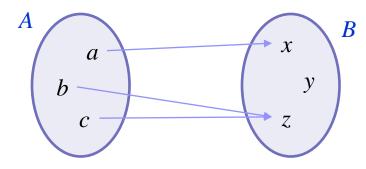
Let that inverse be $f_L: B \to A$.

■ *Proof* of (4)

We have to prove that $f_L = f_R$. Since $f_L \circ f = 1_A$ and $f \circ f_R = 1_B$, $f_L = f_L \circ 1_B = f_L \circ (f \circ f_R) = (f_L \circ f) \circ f_R = 1_A \circ f_R = f_R$.

Image and inverse image:

Let $f: A \to B$, where $A = \{a, b, c\}, B = \{x, y, z\}$, and $f = \{(a, x), (b, z), (c, z)\}.$



• The image of the set $\{a, b\}$ under f:

 $f = (\{a, b\}) = \{f(a), f(b)\} = \{x, z\}$

- The inverse image of $\{z\}$ under f is $\{b, c\}$.
- The inverse image of $\{x, z\}$ under f is $\{a, b, c\}$.