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Functions

 Definition:
A function f from a set A to a set B, denoted by f : A → B, is a 
relation between A and B in which for every a ∈ A there is a 
unique b ∈ B such that (a, b) ∈ f.

 Example:
A = {a, b, c},  B = {α, β, γ, δ}

R1 = {(a, α), (a, δ), (b, γ)} is not a function.

R2 = {(a, α), (b, α), (c, δ)} is a function.
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Functions

 Note:
 For a function f : A → B, (c, δ) ∈ f is also written as f (c) = δ where 

c is called the argument and δ is called the value. 

 As a relation, (c, δ) ∈ f is sometimes written as c f δ.

 Domain D (f) = A and range R (f) ⊆ B (B : codomain of f ).

 The order of function composition is the reverse of relations.

Let A = {a, b, c},  B = {α, β}, and C = {x, y, z}.

Let f = {(a, β), (b, β), (c, α)} and g = {(α, x), (β, z)}.

Then, g ◦ f = {(a, z), (b, z), (c, x)}.  (not written as f ◦ g)

g ◦ f (a) = g(f (a)) = z.
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Functions

 Commutative Diagram

A

B

C

f g

g ◦ f



Equivalence Relations & Partitions 5

Functions

 Theorem:
If f : A → B and g : B → C then g ◦ f : A → C.

 Proof :
g ◦ f is obviously a relation between A and C.

To prove that for every a ∈ A there is a unique c ∈ C such that   
(a, c) ∈ g ◦ f.

For every a ∈ A there is a unique b ∈ B such that (a, b) ∈ f 
because f is a function.

But for b ∈ B there is a unique c ∈ C such that (b, c) ∈ g because 
g is a function.

Therefore, g ◦ f : A → C.   �
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Functions

 Theorem:
Let f : A → B, g : B → C, and h : C → D. Then (h ◦ g) ◦ f = h ◦ (g ◦ f ).

(i.e., function composition is associative.)

A

B

D

f

g

(h ◦ g) ◦ f = h ◦ (g ◦ f )

C

h
g ◦ f h ◦ g



Equivalence Relations & Partitions 7

Functions

 Notation:
BA denote the set of all functions from A to B.

Suppose |A| = n and |B| = m.  Then, |BA| = mn.

 Definitions: Let f : A → B.

 f is said to be surjective if R (f) = B.

 f is said to be injective if for every (a, b) ∈ f and (a′, b) ∈ f, a = a′.

 If f is both surjective and injective then it is called bijective.
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Functions

 Terminologies:
is a surjection  is surjective  is onto

is an injection  is injective  is one-to-one

is a bijection  is bijective  is one-to-one and onto

b
α

A B

c

a

β
surjective
not injective
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Functions

 Terminologies:

 Note that for a function f : A → B to be bijective, A and B should 
have the same cardinality.

b

α
A B

c

a

γ
β

injective
not surjective

δ
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Functions

 Theorem: Let f : A → B and g : B → C.

(1) If f and g are surjective then g ◦ f  is surjective.

(2) If f and g are injective then g ◦ f  is injective.

(3) If f and g are bijective then g ◦ f  is bijective.

 Proof of (2)

Note that g ◦ f : A → C.

Let (a, c) and (a′, c) be elements of g ◦ f.

Since (a, c) ∈ g ◦ f, there must be a b ∈ B such that (a, b) ∈ f and 
(b, c) ∈ g.
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Functions

 Proof of (2)

Similarly for (a′, c) ∈ g ◦ f, there must be a b′ ∈ B such that         
(a′, b′) ∈ f  and (b′, c) ∈ g.

But b = b′ because (b, c) ∈ g, (b′, c) ∈ g, and g is injective.

Since (a, b) ∈ f, (a′, b′) ∈ f, b = b′, and f  is injective, we get a = a′.

�

 Theorem: Let f : A → B and g : B → C.

 If g ◦ f  is surjective then g is surjective.

 If g ◦ f  is injective then f is injective.

 If g ◦ f  is bijective then g is surjective and f is injective.
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Functions

 Definition:
The function 1A : A → A, denoted by 1A(a) = a for all a ∈ A, is 
called the identity function for A.

 Example:
If A = {a, b, c} then the identity function 1A for A is 

{(a, a), (b, b), (c, c)}.
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Functions

 Right and left identities:  Let f : A → B.

 f ◦ 1A = f, where 1A is called the right identity function of f.

(1A ◦ f = f ?  meaningless if A ≠ B)

 1B ◦ f = f, where 1B is called the left identity function of f.

A
1A f

B

A
B

1Bf
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 Inverse function:
Let f : A → B. Then the converse of f is f c = {(y, x) | (x, y) ∈ f }.

b
α

A B

c

a

β f1
c is not a function

f1 : A → B

f2
c is not a function

f2 : A → B
b

α
A B

c

a

γ
β

δ
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Functions

 Inverse function:

The converse of a function is not necessarily a function.

If there exists a converse which is a function, it is called the 
inverse of f, and is denoted by f –1.

f3
c is a function

f3 : A → B
b

α
A B

c

a
β

γ
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Functions

 Right and left inverses:  Let f : A → B and g : B → A.

 If f ◦ g = 1B, then g is called the right inverse of f.

 If g ◦ f = 1A, then g is called the left inverse of f.

B A

g

f

A B
f

g
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Functions

 Theorem: Let f : A → B.

(1) f has a left inverse if and only if f is injective.

(2) f has a right inverse if and only if f  is surjective.

(3) f has a left and right inverse if and only if f is bijective.

(4) If f is bijective then the left inverse of f is equal to the right 
inverse of f.

 Proof of (1)

(if part):  f has a left inverse if f is injective.

Assume that f is injective.

Let g : B → A be defined as follows.
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Functions

 Proof of (1)

For b ∈ B,

Obviously g is a relation and D (g) = B.

Let (x, y) ∈ g and (x, z) ∈ g.

If x ∈ R (f), then y = z by the lower part of g’s definition.

If x ∈ R (f), then f (y) = x and f (z) = x.

But since f  is injective, y = z.

Hence, when (x, y) ∈ g and (x, z) ∈ g, y = z.

Thus, g is a function.

g(b) =
a if b ∈ R (f) and f (a) = b

c otherwise, where c is a unique element of A
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Functions

 Proof of (1)

Note that g ◦ f : A → A.

Let a ∈ A.

Then g ◦ f (a) = g(f (a)) = a by the top part of g’s definition.

Hence, g ◦ f = 1A.

Therefore, g is the left inverse of f.

(only if part): f  has a left inverse only if f is injective.

Assume that f  has a left inverse.

Let g : B → A be a left inverse of f, i.e., g ◦ f = 1A.

We want to prove that f  is injective.
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Functions

 Proof of (1)

Assuming (x, y) ∈ f and (z, y) ∈ f, we have to show x = z.

x = 1A(x) = g ◦ f (x) = g(f (x)) = g(y) = g(f (z)) = g ◦ f (z) = 1A(z) = z

Hence, f is injective.

�

 Proof of (4)

Since f  is surjective, it has a right inverse.

Let that inverse be f R : B → A.

Since f  is injective, it has a left inverse.

Let that inverse be f L : B → A.
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Functions

 Proof of (4)

We have to prove that f L = f R.

Since f L ◦ f = 1A and f ◦ f R = 1B,

f L = f L ◦ 1B = f L ◦ (f ◦ f R) = (f L ◦ f ) ◦ f R = 1A ◦ f R = f R.

�
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Functions

 Image and inverse image:
Let f : A → B, where A = {a, b, c}, B = {x, y, z}, and 

f = {(a, x), (b, z), (c, z)}.

 The image of the set {a, b} under f :

f = ({a, b}) = {f (a), f (b)} = {x, z}

 The inverse image of {z} under f is {b, c}.

 The inverse image of {x, z} under f  is {a, b, c}.

b

x
A B

c

a
y

z
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