

Definition:

For sets *A*, *B* the Cartesian product, or cross product, of *A* and *B* is denoted by $A \times B$ and equals $\{(a, b) | a \in A, b \in B\}$.

Ordered pair

For (a, b), $(c, d) \in A \times B$, (a, b) = (c, d) iff a = c and b = d.

- *cf*. unordered pair: {*a*, *b*}
- $(a, b) \neq \{a, b\}, (a, b) \neq (b, a)$

Example:

Let $A = \{a, b, c\}$ and $B = \{x, y\}$. Then the cross product $A \times B$ is $\{(u, v) \mid u \in A, v \in B\} = \{(a, x), (b, x), (c, x), (a, y), (b, y), (c, y)\}.$

Terminologies:

Let $A_1, A_2, ..., A_n$ be sets. Then the (*n*-fold) product of $A_1, A_2, ..., A_n$ is denoted by $A_1 \times A_2 \times \cdots \times A_n$ and equals

 $\{(a_1, a_2, \dots, a_n) \mid a_i \in A_i, 1 \le i \le n\}.$

The elements of $A_1 \times A_2 \times \cdots \times A_n$ are called **n-tuples**, although we generally use the term triple in place of 3-tuple.

□ If
$$(a_1, a_2, ..., a_n)$$
, $(b_1, b_2, ..., b_n) \in A_1 \times A_2 \times \cdots \times A_n$,
then $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$ iff $a_i = b_i$, $1 \le i \le n$.

Note:

- □ Cross product is not commutative, i.e., $A \times B \neq B \times A$.
- □ Cross product is not associative, i.e., $(A \times B) \times C \neq A \times (B \times C)$. □ $A \times \emptyset = \emptyset$
- $\Box \quad \text{If } A_1 = A_2 = \cdots = A_n \text{, then } A_1 \times A_2 \times \cdots \times A_n = A^n \text{.}$

■ Theorem: For any sets *A*, *B*, and *C*,

$$\Box A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$\Box \ (B \cup C) \times A = (B \times A) \cup (C \times A)$$

$$\Box \ A \times (B \cap C) = (A \times B) \cap (A \times C)$$

 $\Box (B \cap C) \times A = (B \times A) \cap (C \times A).$

Proof: A × (B ∪ C) = (A × B) ∪ (A × C)
(i) To show A × (B ∪ C) ⊆ (A × B) ∪ (A × C)
Let (x, y) be an element of A × (B ∪ C).
Then, by the definition of cross product, x ∈ A and y ∈ B ∪ C.

■ Proof :

There are two cases:

■ CASE 1: *y* ∈ *B*

Since $x \in A$ and $y \in B$, $(x, y) \in A \times B$.

■ CASE 2: *y* ∈ *C*

Since $x \in A$ and $y \in C$, $(x, y) \in A \times C$.

Since one of the two cases is true, either $(x, y) \in A \times B$ or $(x, y) \in A \times C$.

Hence, by the definition of union of sets, $(x, y) \in (A \times B) \cup (A \times C)$.

That is, $(x, y) \in A \times (B \cup C) \rightarrow (x, y) \in (A \times B) \cup (A \times C)$.

Proof :

Since (x, y) was an arbitrary element of $A \times (B \cup C)$, we can conclude that every elements of $A \times (B \cup C)$ is an element of $(A \times B) \cup (A \times C)$.

Therefore, by the definition of a subset

 $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C).$

(ii) To show $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$

From (i) and (ii), we conclude that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

• A formal Proof : $A \times (B \cap C) = (A \times B) \cap (A \times C)$

No.	Formula	Rule	Just.	Taut.
1	$(a,b) \in A \times (B \cap C)$	AP		
2	$a \in A \land b \in (B \cap C)$	Def. of \times	1	
3	$a \in A$	Т	2	I_1
4	$b \in (B \cap C)$	Т	2	I_2
5	$b \in B \land b \in C$	Def. of \cap	4	
6	$b \in B$	Т	5	I_1
7	$b \in C$	Т	5	I_2
8	$a \in A \land b \in B$	Т	3, 6	I_9
9	$a \in A \land b \in C$	Т	3, 7	I_9

• A formal Proof : $A \times (B \cap C) = (A \times B) \cap (A \times C)$

No.	Formula	Rule	Just.	Taut.
10	$(a, b) \in A \times B$	Def. of \times	8	
11	$(a, b) \in A \times C$	Def. of \times	9	
12	$(a, b) \in A \times B \land (a, b) \in A \times C$	Т	10, 11	I_9
13	$(a, b) \in A \times B \cap A \times C$	Def. of \cap	12	I_2
14	$(a,b) \in A \times (B \cap C)$	CP	1, 13	
	$\rightarrow (a, b) \in A \times B \cap A \times C$			
15	$(\forall y) (a, y) \in A \times (B \cap C)$	UG	14	
	$\rightarrow (a, y) \in A \times B \cap A \times C$			

• A formal Proof : $A \times (B \cap C) = (A \times B) \cap (A \times C)$

No.	Formula	Rule	Just.	Taut.
16	$(\forall x)(\forall y) (x, y) \in A \times (B \cap C)$	UG	15	
	$\rightarrow (x, y) \in A \times B \cap A \times C$			
17	$A \times (B \cap C) \subseteq A \times B \cap A \times C$	Def. of \subseteq	16	
18	$(a, b) \in A \times B \cap A \times C$	AP		
	• • • • •			
	$(a, b) \in A \times B \cap A \times C$	CP		
	$\rightarrow (a, b) \in A \times (B \cap C)$			
	· · · · ·			
	$A \times B \cap A \times C \subseteq A \times (B \cap C)$	Def. of \subseteq		
	$A \times (B \cap C) = A \times B \cap A \times C$	Def. of =		

Definitions:

- □ Let *A* and *B* be sets. Then, any subset of $A \times B$ is called a relation between *A* and *B*.
- \Box Any subset of $A \times A$ is called a (binary) relation on A.
- □ If $A_1, A_2, ..., A_n$ are sets then any $R \subseteq A_1 \times A_2 \times \cdots \times A_n$ is an n-ary relation on $A_1, A_2, ..., A_n$.
- □ Let *R* be a binary relation between a set *A* and a set *B*. Then, the domain of *R*, designated by $\mathcal{D}(R)$, is

 $\mathcal{D}(R) = \{ x \mid (x, y) \in R \},\$

and the range of R, designated by $\mathcal{R}(R)$, is

 $\mathcal{R}(R) = \{ y \mid (x, y) \in R \}.$

Examples:

- □ Let $A = \{a, b, c\}$ and $B = \{x, y\}$. If $R \subseteq A \times B$ and $R = \{(b, y), (c, y)\}$, then $\mathcal{D}(R) = \{b, c\}$ and $\mathcal{R}(R) = \{y\}$.
- □ If $R = \{(x, y) | x^2 + y^2 \le 1\}$, then $\mathcal{D}(R) = \{x | -1 \le x \le 1\}$.

□ If $R = \{(x, y) | x + y < 1\}$, then $\mathcal{D}(R) = \{x | x \in \mathbf{R}\}$.

Theorem: Let *S* and *R* be two binary relations. Then,

- $\Box \mathcal{D}(R \cup S) = \mathcal{D}(R) \cup \mathcal{D}(S)$
- $\Box \ \mathcal{R}(R \cup S) = \mathcal{R}(R) \cup \mathcal{R}(S)$
- $\Box \mathcal{D}(R \cap S) \subseteq \mathcal{D}(R) \cap \mathcal{D}(S)$
- $\square \ \mathcal{R}(R \cap S) \subseteq \mathcal{R}(R) \cap \mathcal{R}(S)$
- A counter example for $\mathcal{D}(R) \cap \mathcal{D}(S) \subseteq \mathcal{D}(R \cap S)$:

Let $R = \{(x, y)\}$ and $S = \{(x, z)\}.$

Then, $\mathcal{D}(R) = \{x\}$, $\mathcal{D}(S) = \{x\}$, and $\mathcal{D}(R) \cap \mathcal{D}(S) = \{x\}$.

But, $R \cap S = \emptyset$ and so $\mathcal{D}(R \cap S) = \emptyset$.

Therefore, $\mathcal{D}(R) \cap \mathcal{D}(S) \not\subseteq \mathcal{D}(R \cap S)$.

Note:

- □ For $R \subseteq A \times B$, the number of relations between sets *A* and *B* is $|\wp(A \times B)| = 2^{|A \times B|} = 2^{|A| \cdot |B|}$.
- $\square \emptyset$ is a relation : the smallest relation.
- \Box The universal relation between sets A and B is $A \times B$.

$$\overline{R} = A \times B - R.$$

Definition:

If *R* is a relation between sets *A* and *B* then the converse or inverse of *R*, designated by R^c or R^{-1} , is given by the following:

 $R^{c} = \{(y, x) \mid \{(x, y) \in R\}.$

Theorem: Let R and S be two relations between the sets A and B. Then,

- $\square (R^{c})^{c} = R$ $\square (R \cup S)^{c} = R^{c} \cup S^{c}$ $\square (R \cap S)^{c} = R^{c} \cap S^{c}$ $\square (\overline{R})^{c} = \overline{R^{c}}$ $\square \mathcal{D}(R^{c}) = \mathcal{R}(R)$ $\square \mathcal{R}(R^{c}) = \mathcal{D}(R)$ $\square R(R^{c}) = \mathcal{D}(R)$
 - $\Box \quad \text{If } R \subseteq S \text{ then } R^c \subseteq S^c$

Matrix Representation of a Relation

Let $A = \{a, b, c\}, B = \{x, y\}$, and $R = \{(a, y), (b, x)\}$. Then the matrix representations of R, \overline{R} , and R^c are the followings:

$$M_{R} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad M_{\overline{R}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \qquad M_{R^{c}} = (M_{R})^{T} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Definition:

Let *A*, *B*, and *C* be sets. Let *R* be a relation between *A* and *B*, and *S* be a relation between *B* and *C*. Then the composition of *R* and *S*, denoted by $R \circ S$ or *RS*, is defined as follows:

a

$$R \circ S = \{(x, z) \mid (x, y) \in R \text{ and } (y, z) \in S\}.$$

 $\sum L$

Caution: The composition of relations is not commutative.

 $R \circ S \neq S \circ R$

Definition:

The identity relation on a set *A*, denoted by E_A , is defined as follows:

$$E_A = \{(a, a) \mid a \in A\}$$

■ Note: For any relation *R* on a set *A*,

$$R \circ E_A = E_A \circ R = R$$

• Example:

$$A = \{a, b, c\}, B = \{\alpha, \beta\}, C = \{x, y, z\}$$
$$R = \{(a, \beta), (b, \alpha)\}, S = \{(\beta, x), (\beta, z)\}$$
$$R \circ S = \{(a, x), (a, z)\}$$

Matrix representations:

$$M_{R} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad M_{S} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad M_{E_{A}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$M_{R \circ S} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = M_{R} \cdot M_{S} \qquad \text{(Note: + as \lor and \cdot as \land)}$$

■ Theorem: Let *R*, *S* and *T* be three relations. Then,

$$\Box (R \circ S) \circ T = R \circ (S \circ T)$$
$$\Box R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$$
$$\Box (S \cup T) \circ R = (S \circ R) \cup (T \circ R)$$
$$\Box R \circ (S \cap T) \subseteq (R \circ S) \cap (R \circ T)$$
$$\Box (S \cap T) \circ R \subseteq (S \circ R) \cap (T \circ R)$$

■ A counter example for $(R \circ S) \cap (R \circ T) \subseteq R \circ (S \cap T)$:

Let $R = \{(a, x), (a, y)\}, S = \{(x, \alpha)\}, \text{ and } T = \{(y, \alpha)\}.$

Then, $S \cap T = \emptyset$ and so $R \circ (S \cap T) = \emptyset$.

But, $R \circ S = \{(a, \alpha)\}$ and $R \circ T = \{(a, \alpha)\}$.

Therefore, $(R \circ S) \cap (R \circ T) \nsubseteq R \circ (S \cap T)$.

Notations: If R is a relation on a set A (i.e., $R \subseteq A \times A$),

$$\square R \circ R = R^2$$
$$\square R \circ R \circ \cdots \circ R = R^n$$

- Recursive definition of Rⁿ
 - \square $R^0 = E$, where *E* is the identity relation.
 - $\Box R^{n+1} = R \circ R^n$
- Theorem: Let *R* be a relation on a set *A*. Then,
 - (i) $\mathbb{R}^m \circ \mathbb{R}^n = \mathbb{R}^{m+n}$ and
 - (ii) $(\mathbb{R}^m)^n = \mathbb{R}^{mn}$ for all $m, n \ge 1$.

• **Proof** of (i) $R^m \circ R^n = R^{m+n}$ (induction on m) (Basis step) For m = 1LHS = $R^1 \circ R^n = R \circ R^n = R^{n+1} = RHS$ (by the recursive def. of R^n) (Inductive step) Assume that $R^m \circ R^n = R^{m+n}$. (Inductive Hypothesis). To prove that $R^{m+1} \circ R^n = R^{m+n+1}$ LHS = $(R \circ R^m) \circ R^n$ (by the recursive def. of R^n) $= R \circ (R^m \circ R^n)$ (:: \circ is associative) $= R \circ R^{m+n}$ (by the Inductive Hypothesis) $= R^{m+n+1} = RHS$ (by the recursive def. of R^n)

• **Proof** of (ii) $(R^m)^n = R^{mn}$ (induction on n)

To prove that $(R^m)^{n+1} = R^{m(n+1)}$ LHS = $R^m \circ (R^m)^n$ (by the recursive def. of R^n) = $R^m \circ R^{mn}$ (by the Inductive Hypothesis) = R^{m+mn} (by the theorem just proved) = $R^{m(n+1)} = RHS$

Theorem:

Let *R* be a relation on a finite set *A* with cardinality *n*. Then, there exist *s* and *t* such that $R^s = R^t$ for $0 \le s < t \le 2^{n^2}$.

Proof :

From $R \subseteq A \times A$ we can see that the number of distinct relations on A is $| \wp (A \times A) | = 2^{|A \times A|} = 2^{n^2}$.

Consider the sequence R^0 , R^1 , R^2 ,..., $R^{2^{n^2}}$.

There are $2^{n^2} + 1$ relations in this sequence but there are only 2^{n^2} distinct relations on *A*.

Hence, there must exist *s* and *t* such that $s \neq t$ and $0 \leq s < t \leq 2^{n^2}$ and $R^s = R^t$. \Box

Theorem: Let A be a finite set with cardinality n. Let R be a relation on A such that $R^s = R^t$ with s < t. Let p = t - s. Then,

(1)
$$R^{s+i} = R^{t+i}, i \ge 0.$$

(2)
$$R^{s+pk+i} = R^{s+i}$$
, for all $k, i \ge 0$.

- (3) If $S = \{R^0, R^1, R^2, ..., R^{t-1}\}$ then $R^q \in S$, for any $q \ge 0$.
- *Proof* of (1)

(Basis step) For i = 0

 $R^s = R^t$ is given.

(Inductive step)

Assume $R^{s+i} = R^{t+i}$. (Inductive Hypothesis)

■ *Proof* of (1)

To prove that $R^{s+i+1} = R^{t+i+1}$. LHS = $R \circ R^{s+i}$ (by the recursive def. of R^n) = $R \circ R^{t+i}$ (by the Inductive Hypothesis) = R^{t+i+1} (by the recursive def. of R^n) = RHS