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Rules of Sum and Product

 Useful for analyzing complicated problems through decomposing 
into parts and piecing together partial solutions

 The Rule of Sum

If a first task can be performed in m ways (1), 
while a second task in n ways (2), and 
the two tasks cannot be performed simultaneously (3), 
then performing either task can be accomplished in any one of m + n
ways.
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3 textbooks in 
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2 textbooks in 
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 The Rule of Product

If a procedure can be broken down into first and second stages (1),
and if there are m possible outcomes for the first stage (2) and 
if, for each of these outcomes, there are n possible outcomes for the 
second stage (3), 
then the total procedure can be carried out, in the designated order, 
in mn ways.
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A B C How many ways for A → C ?



Permutations

 Definition

Given a collection of n distinct objects, any (linear) arrangement of 
these objects is called a permutation of the collection.

 In general, if there are n distinct objects and r is an integer, with 1 ≤ r
≤ n, then by the rule of product, the number of permutations of size r
for the n objects is
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 Note that if repetitions are allowed, then by the rule of product there 
are nr possible arrangements, with r ≥ 0.

 In general, if there are n objects with n1 indistinguishable objects of a 
first type, n2 of a second type,…, nr of an r-th type, where n1 + n2 + 
+ nr = n, then there are

(linear) arrangements of the given n objects. (Objects of the same 
type are indistinguishable.)
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( Examples )

1. How many shortest paths from (2, 1) to (7, 4)?

Each path consists of 5 moves to the right and 3
ones upward. Thus the number of paths is 

8! / (5! ⋅ 3!) = 56

2. How many circular arrangements of six people at a 
round table ?

6! / 6 = 5! = 120 
(The rotation factor should be removed.)

3. How many sexually alternate arrangements of 
three males and three females at a round table ?

3 × 2 × 2 × 1 × 1 = 12
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Combinations: The Binomial Theorem

 Combination: Selection with no reference to order
 The number of combinations of size r from a collection of n

distinct objects is

 C(n, r) is sometimes read as “n choose r”.

 Note that C(n, 0) = 1, for all n ≥ 0, and C(n, r) = C(n, n – r).
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 The Binomial Theorem

If x and y are variables and n is a positive integer, then

 Corollary: For each integer n > 0,
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 The Multinomial Theorem

For positive integers n, t, the coefficient of                          in the 
expansions of                                is

where                   for all              and                                 .
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Proof :

which is also written as

and is called a multinomial coefficient.
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Combinations with Repetition

 An Example

On their way home from track practice, seven high school freshmen 
stop at a restaurant, where each of them has one of the following:   
a cheese-burger, a hot dog, a taco, or a fish sandwich. How many 
different purchases are possible?

Answer : The number of ways for selecting 7(r) of 4(n) different 
objects, with repetition, is C(n + r – 1, r) = C(4 + 7 – 1, 7) = C(10, 7). 

c, c, c, h, h, t, f   → x  x x |  x  x |  x  |  x

c, c, h, h, h, t, f   → x  x |  x  x x |  x  |  x

t,  t,  t,  t,  t,  t, f   → |  |  x  x x x x x |  x
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 When we wish to select, with repetition, r of n distinct objects, we 
find that we are considering all arrangements of r x’s and (n – 1) | ’s 
and the total number of ways is

 It is crucial that we recognize the equivalence of the following:

1. The number of integer solutions of the equation

2. The number of selections, with repetition, of size r from a
collection of size n.

3. The number of ways r identical objects can be distributed 
among n distinct containers.
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1. The number of integer solutions of the equation

2. The number of selections, with repetition, of size r from a
collection of size n.

3. The number of ways r identical objects can be distributed 
among n distinct containers.
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(Ex. 1) Consider the following program segment, where i, j, and k are 
integer variables. How many times is the print statement executed?

for i = 1 to 20 do
for j = 1 to i do

for k = 1 to j do xx x
print(i * j + k); x  x x

Answer : The selection of i, j, and k where the print statement is 
executed satisfies the condition 1 ≤ i ≤ j ≤ k ≤ 20. In fact, any 
selection a, b, c (a ≤ b ≤ c) of size 3, with repetitions allowed, from the 
list 1, 2,…, 20 results in one of the correct selections, here, k = a, j = 
b, i = c. Consequently the print statement is executed
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Note that the answer is C(n + 3 – 1, 3) in general.

for i = 1 to n do
for j = 1 to i do

for k = 1 to j do
print(i * j + k);

Another Approach : The print statement is executed T times that 
can be represented as follows;
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(Ex. 2) In how many ways can we distribute seven bananas and six 
oranges among four children so that each child receives at least one 
banana?

Answer: (1) ways of banana distribution (n = 4, r = 3): C(4 + 3 – 1, 3), 
(2) ways of orange distribution (n = 4, r = 6): C(4 + 6 – 1, 6) ∴By the 
rule of product, the total # of ways is C(6,3) × C(9,6) = 1680.

(Ex. 3) A message is made up of 12 different symbols and is to be 
transmitted through a communication channel. In addition to the 12
symbols, the transmitter will also send a total of 45 (blank) spaces 
between the symbols, with at least three spaces between each pair 
of consecutive symbols. In how many ways can the transmitter send 
such a message?   Answer: 12! ⋅ C(11 + 12 – 1,12).
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