Frequency-Domain Analysis of Control Systems

Seong-Ho Song

자동제어 시스템

Frequency Response

D Output for Sinusoidal Input $r(t) = M_i \cos(wt + A_i)$

$$c(t) = M_i M_G(w) \cos(wt + A_i + A_G(w))$$

Frequency Response

$$G(jw) = M_G(w) \angle A_G(w)$$

- 1. Magnitude : $M_G(w)$
- 2. Phase : $A_G(w)$
 - □ Bandwidth : -3 dB
 - Resonant Peak : Maximum magnitude, frequency

Seong-Ho Song

Ideal Low Pass Filter

Seong-Ho Song

Resonant Peak :

■ Damping ratio 가 크면, Resonant Peak 도 작아진다.

Seong-Ho Song

M_r versus Damping Ratio

Seong-Ho Song

Normalized resonant frequency versus damping ratio for the prototype second-order system

Normalized resonant frequency versus damping ratio for the prototype second-order system

Damping ratio ζ

Seong-Ho Song

Bandwidth/ ω_n versus damping ratio

Bandwidth/ ω_n versus damping ratio for the prototype second-order system.

Seong-Ho Song

Seong-Ho Song

Adding zeros

Bandwidth of a second-order system with open-loop transfer function

Seong-Ho Song

Unit-step responses with Added zero

• Unit-step responses of a second-order system with a forward-path transfer function G(s).

Seong-Ho Song

Adding pole; Magnification curves

Seong-Ho Song

Adding a Pole : Unit-step responses

Frequency Domain Analysis

Seong-Ho Song

Nyquist Plot of L(s)

Frequency Domain Analysis

Seong-Ho Song

Gain Margin & Phase Margin

Seong-Ho Song

Relative Stability

Seong-Ho Song

Gain Margin & Phase Margin in Bode Plot

Seong-Ho Song

Seong-Ho Song