Lecture Plate Boundaries

Present day movement, accretion, reformation, segregation

- 1. Divergent
- 2. Convergent
- 3. Transform

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Figure 4.22 Schematic diagram showing the major features of a plate. Near the spreading center, where the temperature is high because of rising magma, the lithosphere is thin. Away from the spreading center, the lithosphere cools, becomes denser and also thicker, and so the lithosphere-asthenosphere boundary is deeper. When the lithosphere sinks into the asthenosphere at the subduction zone, it is reheated. At a depth of about 100 km, the oceanic crust starts to melt, and the magma rises and forms an arcuate belt of volcanoes parallel to the subduction zone.

Copyright © 2004 Pearson Prentice Hall, Inc.

- F₁ Friction between convecting asthenosphere and rigid lithosphere
- F₂ Gravitational push from mid-ocean ridge (high topography)
- F_3 Pull from increasing density of slab as it cools
- F₄ Elastic resistance of oceanic plate being pulled into subduction zone
- F₅ Pull of overriding plate toward subduction zone as subducting plate bends
- F₆ Friction between subducting slab and overlying lithosphere
- F₇ Sinking of oceanic slab as it cools and becomes denser

Plate boundaries

- Divergent new oceanic crust
 - Some mantle melts new basaltic oceanic crust
 - Symmetrical geomagnetic record and aging
 - F_2 force pushing
 - Cools, becomes more dense and subsides away from ridge
- Convergent plates collide
 - Subduction of oceanic crust
 - Basalt at the base of the lithosphere converted to eclogite
 - Forms at depths > 50 km in the upper mantle
 - $-F_3$ force pulling
- Transform plates slide past each other

Shear

3

- 1. Divergent
- 2. Convergent
- 3. Transform

Table 3.1 Characteristics of Plate Boundaries									
Plate Boundary		Plate Movement	Seafloor	Events Observed	Example Locations				
Divergent plate boundaries	Ocean- ocean	Apart	Forms by seafloor spreading.	Ridge forms at spreading center. Ocean basin expands, plate area increases. Many small volcanoes and/or shallow earthquakes.	Mid-Atlantic Ridge, East Pacific Rise				
	Continent- continent		New ocean basin may form as continent splits.	Continent spreads, central rift collapses, ocean fills basin.	East African Rift Valley, Red Sea				
Convergent plate boundaries	Ocean- continent	Together	Destroyed at subduction zones.	Dense oceanic lithosphere plunges beneath less dense continental. Earthquakes trace path of down- moving plate as it descends into asthenosphere. A trench forms. Subducted plate partially melts. Magma rises to form continental volcanoes.	Western South America, Cascade Mountains in western United States				
	Ocean- ocean			Older, cooler, denser crust slips beneath less dense crust. Strong quakes. Deep trench forms in arc shape. Subducted plate heats in upper mantle, magma rises to form curving chains of volcanic islands.	Aleutians, Marianas				
	Continent- continent		Closure of Ocean Basins.	Collision between masses of granitic continental lith- osphere. Neither mass is subducted. Plate edges are compressed, folded, uplifted; one may move beneath the other.	Himalayas, Alps				
Transform plate boundaries		Past each other	Neither created nor destroyed.	A line (fault) along which lithospheric plates move past each other. Strong earthquakes along fault.	San Andreas Fault; South Island, New Zealand				
				Transform faults across spreading center.	Mid-ocean ridges				

Diverging Boundaries

Formation of ocean basin

Formation of rift valley

Other evidence

- Hydrothermal vents (discovered in 1977)
 - Thermal anomalies (unusually warm water) found in 1972 over a ridge near Galapagos Islands
 - Sent Alvin down in 1977
- Unusual organisms
- Pillow lavas from recently extruded ocean crust
- Hot water comes from seawater ventilating through the rocks
- Energy for life comes from geothermal energy and chemical energy comes from sea water – chemosynthetic bacteria are base of food chain

Global Ridge System

Converging Boundaries

Oceanic-continental convergence

© 2005 Brooks/Cole - Thomson

Cooler, more dense slab sinks Melting of subducting slab + water and CO_2 + some mantle + some continental lithosphere

Converging plates

- 2 continental plates e.g., Himalayas and Alps
 - Can get marine fossils in mountains (remember continental shelf is part of the continental lithosphere)
- Continental and oceanic plates e.g., S America & N America
 - Mountains and island arcs
- 2 oceanic plates Aleutian and Marianas trenches
 - Older slab (denser and cooler) sinks

Three types of collisions

Continental arc (oceanic platecontinental plate collision)

Island arc (oceanic plate- oceanic plate collision)

continental plate- continental plate collision

Fig. 7-19

Collision of continental crust

COLLISION of Continental plates

• Whereas oceanic ridges indicate tension, continental mountains indicate compressional forces are squeezing the land together.

Sedimentary Rocks Squeezed by Compression

Continent-continent collision

The convergence of the Nazca and South American Plates has deformed and pushed up limestone strata to form towering peaks of the Andes, as seen here in the Pachapaqui mining area in Peru.

Figure 4.24

Continental arc system Continent-oceanic collision

Sediment at the edge of continental crust on the subducting plate is deformed and welded onto already deformed continental crust on overriding plate.

Partial melting of slab (sinking plate), sediment cover and continental crust

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Collision near continental edge : Ocean crust sinks because its denser

Island arc systems (2 oceanic plates far from continental crust)

Island Arc Formation

Oceanic/oceanic plate boundary

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Figure 4.20 Structure of tectonic plates at a convergent margin. Along the line of subduction, an oceanic trench is formed, and sediment deposited in the trench, as well as sediment from the sinking plate, is compressed and deformed to create a mélange of shattered and crushed rock shaped as a fore-arc ridge. The sinking oceanic crust eventually r eaches the temperature where melting commences and forms andesitic magma, which then rises to form an arc of volcanoes on the overriding plate. On the side of the island arc away from the trench, tensional forces lead to the development of a back-arc basin.

^{© 2011} Encyclopædia Britannica, Inc.

Although trenches would seem to be positionally stable over time, it is hypothesized that some trenches, particularly those associated with subduction zones where two oceanic plates converge, retrograde, that is, they move backward into the plate which is subducting, akin to a backward-moving wave.

This has been termed trench rollback or hinge retreat (also hinge rollback). This is one explanation for the existence of back-arc basins.

TRENCH roll back

Photograph: Scientists at Lamont-Doherty Earth Observatory and the University of Chile have discovered that most of earth's great crustal plates behave like sea anchors that mariners use to aim their ships in stormy seas. When an upper plate is moving over the earth's mantle toward a descending plate, a "sea anchor force" draws the descending slab up through the mantle to a shallow angle, like a sea anchor of a ship against the wind, and great earthquakes occur (Case 1). When the upper plate is moving away from the descending plate, the sea anchor force pushes against the slab and bends it down--like the anchor of a ship going with the wind. That relieves friction at the contact zone where the two plates slide past one another until a certain point, sliding becomes smooth and no earthquakes occur (Case 2). When the upper plate is moving away rapidly enough, it rifts apart to create a new ocean basin behind an arc of volcanic islands, called a back-arc basin (Case 3). Photograph: Christopher Scholz. Photo Credit: Sally Savage.

© 2011 Encyclopædia Britannica, Inc.

Bac-arc basin

- Back-arc basin, submarine basin that forms behind an island arc. Such basins are typically found along the western margin of the Pacific Ocean near the convergence of two tectonic plates. Back-arc basins are sites of significant hydrothermal activity, and the deep-sea vents that occur in these regions often harbour diverse biological communities. Examples of back-arc basins include the Sea of Japan, the Kuril Basin in the Sea of Okhotsk, the Mariana Trough in the Philippine Sea, and the South Fiji Basin.
- A back-arc basin is formed by the process of back-arc spreading

CENTRAL AMERICA

Global Distrubution of Active Marine Volcanic Arcs

Transform faults

- Transform faults
 - Plates moving past each other
 - Relieve pressure due to earth's curvature, relative rates of spreading, etc

Axis of spreading is broken up by curvature of earth or unequal spreading, etc

Spreading cannot proceed evenly on the surface of a sphere (this would necessarily require faster spreading at the equator and slower spreading at the poles

Transform Boundaries

Transform fault. No characteristic topographic expression, but margin is often marked by a long, thin valley. Earthquakes down to 100 km and often strong.

Plate 2

Transform

fault

margin

Plate

fault

D.

Lithosphere

Transform

Continental crust

Copyright © 2004 Pearson Prentice Hall, Inc.

© 2005 Brooks/Cole - Thomson

(b) SAN ANDREAS FAULT

Conservative margins Transform faults

Conservative margins Transform faults

(ii) PLATE BOUNDARY.

Transform faults and accretion

 Can cleave off bits of continental crust that are plastered onto other continental land masses

Net result

- Spreading rates at transform faults
 - Pacific plate moves NW at 8 cm/yr
 - N American plate moves W at 2 cm/yr
 - Indian plate moves NE at 12 cm/yr
- Pacific Ocean is shrinking and Atlantic is growing
 - Atlantic opened about 200 MY ago so there should be no rocks older than this in the Atlantic

Stage 1: Embryonic

Motion: Rift flank uplift, rift valley subsidence Features: Complex system of rift valleys and lakes on continent Example: East African Rift Valleys

Stage 2:JuvenileMotion:Divergence (spreading)Features:Narrow sea with matching coasts.
Oceanic ridge formed.Example:Red Sea

Stage 3:MatureMotion:Divergence (spreading)Features:Ocean basin with continental
margins. Ocean continues to
widen at oceanic ridge.Example:Atlantic Ocean, Arctic Ocean

Stage 4: Declining

Motion: Convergence (subduction) Features: Subduction begins. Island arcs and trenches form around basin edge.

Example: Pacific Ocean

Stage 5: Terminal

Motion: Convergence, collision, and uplift Features: Oceanic ridge subducted. Narrow, irregular seas with young mountains. Example: Mediterranean Sea

Stage 6:SuturingMotion:Convergence and upliftFeatures:Mountains form as two continental
crust masses collide, are
compressed, and override.Example:India–Eurasia collision, Himalaya
Mountains

STAGE	MOTION	PHYSIOGRAPHY	EXAMPLE
EMBRYONIC	Uplift	Complex system of linear rift valleys on continent	East African rift valleys
JUVENILE	Divergence (spreading)	Narrow seas with matching coasts	Red Sea
MATURE	Divergence (spreading)	Ocean basin with continental margins	Atlantic and Arctic Oceans
DECLINING	Convergence (subduction)	Island arcs and trenches around basin edge	Pacific Ocean
TERMINAL	Convergence (collision) and uplift	Narrow, irregular seas with young mountains	Mediterranean Sea
SUTURING	Convergence and uplift	Young to mature mountain belts	Himalaya Mountains

Life cycle of Plates

"The Wilson Cycle"

Hotspots

- Mantle plume
- Direction of plate motion

Hot spots – surface expressions of plumes Stationary spot and plate moving over it.

Meiji Seamount 70 Ma

Aleutian Islands

Emperor Seamounts

50 Ma 40 Ma Hawanan-Emperor Bend 30 Ma 20 Ma 10 Ma Kauai 5 Ma

nawalian Ridge

Hawaii <1 Ma Position of Loihi

a det

PACIFIC OCEAN

© 2005 Brooks/Cole - Thomson

Ma = million years ago

Hot Spots?

The Earth's Early Crust

	<u>Oceanic crust</u>	Continental crust
First appearance	~4.5 bybp	~4.3 bybp
Where formed	ocean ridge High temperature basalt	submarine plateaus Lower temperature
Lateral extent	widespread, rapidly	local, rapidly recycled
	recycled	(?)
How generated	partial melting of ultramafic rock in upper mantle	partial melting of wet mafic rocks

*tonalite-trondhjemite-granodiorite Low K, high Si granitoids dominated by quartz and plagioclase feldspar

The Rock cycle

Copyright © 2004 Pearson Prentice Hall, Inc.

Most recent episode of Seafloor spreading:

Pangaea first broke into 2 pieces

X Mid-ocean ridge

Island arc trench

2

Ma = mega-annum, indicating millions of years ago

© 2005 Brooks/Cole - Thomsor

Sea opens between N and S continents and Between Africa and Antarctica

Late Stage Triassic ~180 Ma 🗙 Mid-ocean ridge Island arc trench

India moves North

Ma = mega-annum, indicating millions of years ago

X Mid-ocean ridge

Sand arc trench

Ma = mega-annum, indicating millions of years ago

© 2005 Brooks/Cole - Thomson

S Atlantic opens Antarctica moving S India moving N Australia separates and moves N

Ma = mega-annum, indicating millions of years ago

50 MY in the future:

- 1. Africa will move N and close Mediterranean Sea
- 2. E Africa will detach (Red Sea rift zone) and move to India
- 3. Atlantic Ocean will grow and Pacific will shrink as it is swallowed into Aleutian trench.
- 4. W California will travel NW with the Pacific Plate (LA will be swallowed into the Aleutian trench in 60 MY).

Coreal Reefs

Palmyra Island

Atolls \rightarrow

Fanning Island

Homework #2

- Prepare a short report (<5 pages with figures) for how the East Sea and Dokdo and Uleung Islands have been formed
 - due in two weeks