
Chapter 02 초월함수

(Transcendental Function)

● 지수함수

n: 지수 (exponent, power) N번

a: 밑(base)

지수의 성질

$$1=a^{0}, \ \frac{1}{a}=a^{-1}, \ \frac{1}{a^{2}}=a^{-2}, \ \cdots, \ \frac{1}{a^{n}}=a^{-n}$$
 $\sqrt{a}=a^{1/2}, \ \sqrt[3]{a}=a^{1/3}, \ \cdots, \ \sqrt[n]{a}=a^{1/n}$

● 지수법칙

(1)
$$a^m a^n = a^{m+n}$$

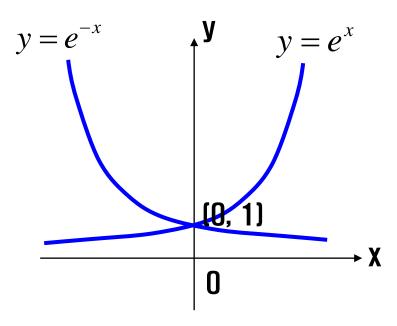
(2)
$$(a^m)^n = a^{mn}$$

(3)
$$(ab)^n = a^n b^n$$

$$(4) \ \frac{a^m}{a^n} = a^{m-n}$$

$$(5) \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

지수함수 (exponential function) y=ax (단, a>0, a = 1)

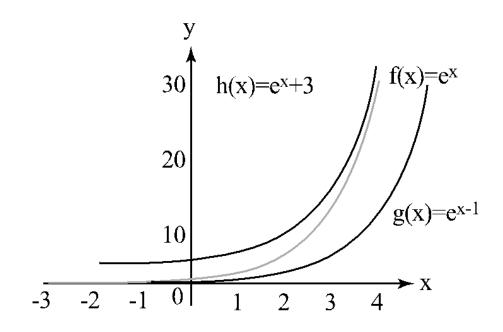


- X 증가 → y 감소
- X → ∞ 이면 y → 0 (x축 점근선)
- a⁰=1 이므로 항상 (0,1) 통과

자연지수함수 (natural exponential function)

$$y = e^x$$

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2.718281828$$



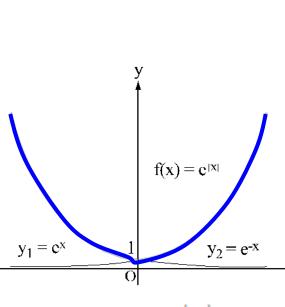
y=ex 와 y=e-x의 그래프

지수함수의 이동

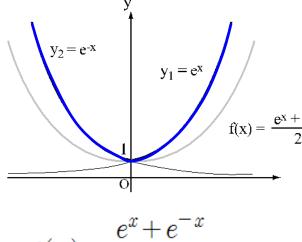
y=a^x → y = a^x +c : y축 방향으로 +c만큼 평행이동

→ y = a^{x-c} : x축 방향으로 +c만큼 평행이동

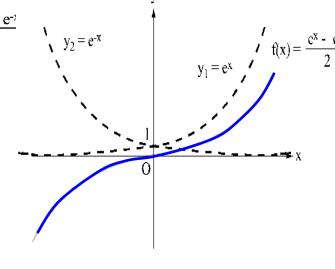
y = e^x 의 평행이동


예제 2-1

다음 함수의 그래프를 그려라.


(1)
$$f(x) = e^{|x|}$$

(2)
$$f(x) = \frac{e^x + e^{-x}}{2}$$


(3)
$$f(x) = \frac{e^x - e^{-x}}{2}$$

$$f(x) = e^{|x|}$$

$$f(x) = \frac{e^x + e^{-x}}{2}$$

$$f(x) = \frac{e^x - e^{-x}}{2}$$

$$2^x = 9$$
, $18^y = 27$ 일 때, $\frac{2}{x} - \frac{3}{y}$ 의 값을 구하여라.

solution

$$2^x = 9$$
로부터 $2 = 3^{\frac{2}{x}} \cdots$ ①

$$18^y = 27$$
로부터 $18 = 3^{\frac{3}{y}} \cdots$ ②

이고, ①÷②를 구하면

$$\frac{2}{18} = \frac{3^{\frac{2}{x}}}{3^{\frac{3}{y}}} = 3^{\frac{2}{x} - \frac{3}{y}} \quad \text{Eff} \quad \frac{1}{9} = 3^{-2} = 3^{\frac{2}{x} - \frac{3}{y}}$$

따라서
$$\frac{2}{x} - \frac{3}{y} = -2$$
이다.

로그함수(logarithm function)

$$y=\log_a x$$
 (단, x>0 a>0, a = 1)

$$y = a^{x}$$
 역할수
$$x = a^{y}$$

$$y = \log x$$

자연로그(natural log) $\log_e x = \ln x$

상용로그(common log) $\log_{10} x$

예제 2-3)

다음 지수식을 동치인 로그식으로 나타내어라.

$$(1) 10^0 = 1$$

$$(2) \ 3^1 = 3$$

(1)
$$10^0 = 1$$
 (2) $3^1 = 3$ (3) $3^{-a} = b$ (4) $e^a = 1.5$

(4)
$$e^a = 1.5$$

solution

(1)
$$0 = \log_{10} 1$$

(2)
$$1 = \log_3 3$$

(1)
$$0 = \log_{10} 1$$
 (2) $1 = \log_3 3$ (3) $-a = \log_3 b$ (4) $a = \log_e 1.5$

(4)
$$a = \log_e 1.5$$

예제 2-4 다음 로그식을 지수식으로 나타내어라.

$$(1) \log_3 3 = 1$$

(2)
$$\log_{10}\left(\frac{1}{c}\right) = -b$$

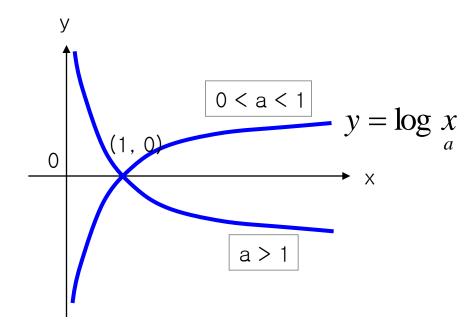
$$(3) \log_e 1 = 0$$

(1)
$$\log_3 3 = 1$$
 (2) $\log_{10} \left(\frac{1}{c}\right) = -b$ (3) $\log_e 1 = 0$ (4) $\log_7 \left(\frac{1}{49}\right) = -2$

$$(1)$$
 $3^1 = 3$

(2)
$$\frac{1}{c} = 10^{-b}$$

(3)
$$1 = e^0$$

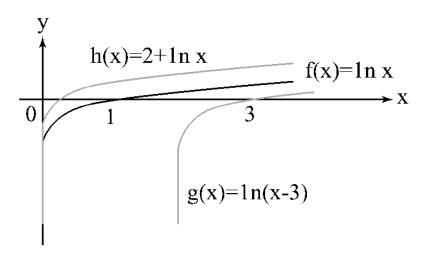

(1)
$$3^1 = 3$$
 (2) $\frac{1}{c} = 10^{-b}$ (3) $1 = e^0$ (4) $\frac{1}{49} = 7^{-2}$

$$\log_3 3 = 1 \qquad (3) \log_a a = 1 (4) \log_a 1 = 0$$

$$(3) \log_a a = 1$$

(4)
$$\log_a 1 = 0$$

로그함수 그래프



- X 증가 **→** y 증가
- X →0 이면 y → ∞
- x=1 일 때 log a1 = 0 이므로 항상 (0,1) 통과

로그함수의 이동

y=ln x → y = ln x + c : y축 방향으로 +c만큼 평행이동

→ y = In (x-a) : x축 방향으로 +a만큼 평행이동

$$g(x) = \ln (x-3)$$
와 $h(x) = 2 + \ln x$

로그법칙

$$(1) \log_a b c = \log_a b + \log_a c$$

: 진수의 곱 → 분리 후 더하기

(2)
$$\log_a \frac{b}{c} = \log_a b - \log_a c$$

: 진수의 나눗셈 → 분리 후 빼기

(3)
$$\log_a b^m = m \log_a b$$

: 진수의 지수 → log 앞으로

(4)
$$\log_a b = \frac{\log_c b}{\log_c a}$$
 단, $c \neq 1$ 인 양수

: 밑변환 공식 → 새로운 밑으로 각각 나누기

예제 2-5 다음 방정식을 구하여라.

(1)
$$9^x - 3^{x+1} + 2 = 0$$

(2)
$$\log_2(x-3) = \log_4(x-1)$$

(1)
$$X=3^x$$
 이라 하면

$$9^{x} - 3^{x+1} + 2 = 3^{2x} - 3 \cdot 3^{x} + 2 = (3^{x})^{2} - 3 \cdot 3^{x} + 2 = 0$$

$$X^{2} - 3X + 2 = (X - 1)(X - 2) = 0$$

$$X = 1 \quad \text{ } \pm \pm \quad X = 2$$

그러므로
$$3^x = 1$$
 또는 $3^x = 2$ 이므로

$$\log_3 1 = 0 = x$$

$$\log_3 2 = x$$

예제 2-5 다음 방정식을 구하여라.

(1)
$$9^x - 3^{x+1} + 2 = 0$$

(2)
$$\log_2(x-3) = \log_4(x-1)$$

$$\log_4(x-1) = \frac{\log_2(x-1)}{\log_2 4} = \frac{\log_2(x-1)}{\log_2 2^2} = \frac{\log_2(x-1)}{2} \quad \text{이므로 준 식은}$$

$$2\log_2(x-3) = \log_2(x-1)$$

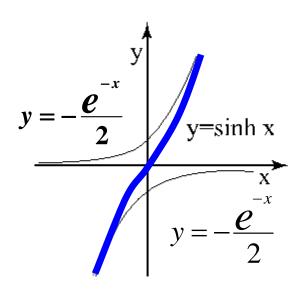
$$\log_2(x-3)^2 = \log_2(x-1)$$

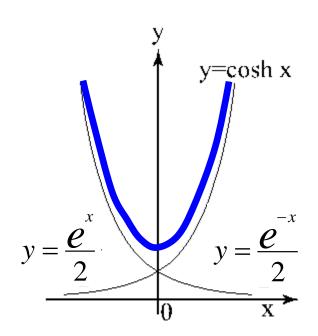
$$그러므로 \ (x-3)^2 = x-1$$

$$x^2 - 6x + 9 = x - 1; \quad x^2 - 7x + 10 = 0; \quad (x-2)(x-5) = 0$$

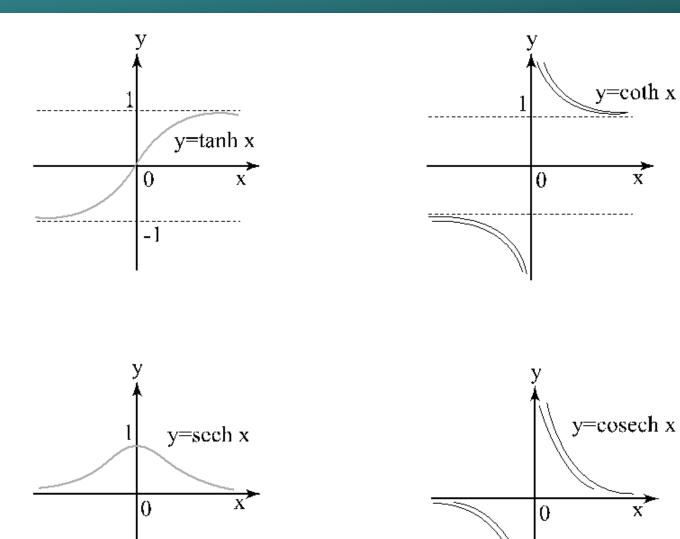
$$x = 2 \quad \text{또는 } x = 5$$
 한편, 진수 조건(x > 3)에 의해 $x = 5$ 이다.

쌍곡선 함수 (hyperbolic function)


쌍곡선사인함수(hyperbolic sine function), 쌍곡선코사인함수(hyperbolic cosine function)


$$sinh x = \frac{e^x - e^{-x}}{2}, \qquad cosh x = \frac{e^x + e^{-x}}{2}$$

그리고 이들 함수로부터 얻어지는 함수들


$$tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \quad (x \neq 0)$$

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}, \qquad \operatorname{cosech} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}} \quad (x \neq 0)$$

쌍곡선함수들의 그래프

쌍곡선함수들의 그래프

쌍곡선 함수 의 성질

쌍곡선 함수

- (1) $\cosh x + \sinh x = e^x$
- (2) $\cosh x \sinh x = e^{-x}$
- $(3) \cosh^2 x \sinh^2 x = 1$
- $(4) 1 \tanh^2 x = \operatorname{sech}^2 x$
- (5) $\coth^2 x 1 = \operatorname{cosech}^2 x$

역쌍곡선 함수

- (6) $y = \sinh^{-1} x \Leftrightarrow x = \sinh y$
- (7) $y = \cosh^{-1} x \Leftrightarrow x = \cosh y, \quad y \ge 0$
- (8) $y = \tanh^{-1} x \Leftrightarrow x = \tanh y, |x| < 1$
- (9) $y = \operatorname{sech}^{-1} x \Leftrightarrow x = \operatorname{sech} y, y \ge 0$
- $(10) \quad y = \coth^{-1} x \quad \Leftrightarrow \quad x = \coth y$
- (11) $y = \operatorname{cosech}^{-1} x \Leftrightarrow x = \operatorname{cosech} y$