« Harmonically related complex exponentials

Sets of periodic exponentials with a common period T, or fundamental
frequencies that are all multiples of a single positive freqléencv @,
g (t)=e ™ k=0+1,+2,... where @, = T—ﬂ

0

2T,
[kl k|
v Fundamental frequency: |k |,

v Fundamental period:

Example 1.5: sum of two complex exponentials

= product of a single complex exponential and a single sinusoid

x(t) =el? + ¥ o
_ ej2.5t (e—j0.5t 4 ej0.5t)
= 212 cos(0.5t)
| | | |
0 27 417 6 8w t
| X(t) |= 2| cos(0.5t) |
R Figure 1.22 The full-wave rectified sinusoid of Example 1.5.
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» General complex exponential signals
C,a:complexnumber  C=[Cle! a=r+ja,
Ceat _ ‘C‘ejé’e(r+ja)0)t _ ‘C‘ertej(wot+9)

Ce™ =|Cle" cos(m,t + 6) + j|Cle" sin(wyt + 6)

Figure 1.23 (a) Growing sinusoidal
signal x(f) = Cecos (wpt + 8),

r > 0; (b) decaying sinusoid x(#) =
Ce ¢os (wpt + 8), r < 0.
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1.3.2 Discrete-Time Complex Exponential and Sinusoidal Signals (sequence)

X[nN]=Ca", C & a:complex numbers

= Ce”
cf.) x(t) =Ce*

« Real exponential signals H‘
C & «: real numbers y ””Hnnnm,...

ll]lll’f?vq.

“l““,,“.....-n

()

»+ Figure 1.24 The real expanential
signal x{n} = Ca™
@We>1(B)0<a<i;

[€) —1<a<0(da<-1

i< EN‘O;
=
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» Sinusoidal signals

x[n] = el™" (1)
X[n] = Acos(gyn+¢@) (2)

el = cos(w,n) + jsin(aw,n)

A A
Acos(wyn + @) =Ee1¢e’“’°” toe 19g N

- (1), (2): Infinite total energy
but finite average power

How about Periodic ?

x[n] = cos 27n/12)

x[n] = cos (8wn/31)

Wi,

!1 l“ H! HI 1‘

T

X[n] = ¢os (n/6)

-

Figure 1.25 Discrete-time sinusoidal signals.

\}
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» General complex exponential signals
C=[Cl’ « =|c|e!

Ca" =|C|a|" cos(w,n +8) + j|C|le]|" sin(ew,n + O)

i mm,ll““”]”l“

Figure 1.26 (a) Growing discrete-time sinusoidal signals; (b) decaying
discrete-time sinusoid.
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1.3.3 Periodicity properties of discrete-time complex exponentials

« Continuous-time signal  €cos(,t)

« Discrete-time signal cos(w,n)

cos((w, +277)n) = cos(w,N)

O0<w, <27 (-7 <w,<r)

Dept. of Electronics Eng. —6- DH26029 Signals and Systems




x[n] = cos (0n) = 1 x[n] = cos (n/8) x[n] = cos (n/4)

A _Il”hr_ J]ln
]|

{b) ©

se e

x[n] = cos {Tn/2) X[n] = cos wn x[n] = cos 3wn/2)

@ (e)

x[n] = cos (7nwn/4) x[n] = cos (157n/8) x[n] = cos 27N

s

Figure 1.27 Discrete-time sinusocidal sequences for several different frequencies.

@

(hy
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ej(coo+27z)n _ ejZﬂneja)on _ eja)on
ej7zn _ (ejﬂ)n _ (_1)n

O<w, <27 (7 <Lw, <)

* Period of a discrete-time signal

Find N such that e!®™N) —glan g gl@oN _q

wyN =272m
@, m
27z N
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« Harmonically related periodic exponentials
(periodic exponentials with a common period N)

$ [n]=e*@MN" k=0+1,... cf) @ (t)=e"" k=0+1L%2,...
¢k+N [n] _ ej(k+N)(27r/N)n _ ejk(Zﬂ'/N)nejZﬂH _ ejk(27r/N)n _ ¢k[n]

g [nN]=1 ¢ [n]=e'*"" g,[n]=e!""" .. g [n] =27 DVE

Meaningful only for k=0,12,---,N -1
¢N [n] — ¢o [n]’ ¢—1[n] — ¢N—1[n]

%( /’t Dept. of Electronics Eng. —-10- DH26029 Signals and Systems
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1.4 The Unit Impulse and Unit Step Function

1.4.1 The discrete-time unit impulse and unit step sequences

 Discrete-time unit impulse

O, n=0
oln] =
: =0
8[n]
1
0 n  puise (sample).

g | Dept. of Electronics Eng. -11- DH26029 Signals and Systems
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 Discrete-time unit step

u[n]

PN S Q|11

1 n=>=0 . o "

Figure 1.29 Discrete-time unit step
sequence.

v o[n]=u[n]—u[n—-1] ; the first difference of the discrete-time step

v u[n]= Z5[m] ; the running sum of the unit sample

M=—o0

< uln]= Z5[n k]

< uln] = Z&[n —K] :asuperposition of delayed impulses
=0 (Fig. 1.31, p. 32)

v X[n]o[n] = X[0]o[n]

v X[n]o[n—n,]= X[n,]6[n—n,]|; Sampling property of the unit impulse

Dept. of Electronics Eng. -12- DH26029 Signals and Systems
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1.4.2 The continuous-time unit step and unit impulse functions

u(t) = O, t<O
B 1, t>0

u{t)

1

Figure 1.32 Continuous-time unit
0 t  step function.

v u(t) = jt o(7)dz; the running integral of the unit impulse
- (Fig. 1.37, p.35)

du(t)

v S(t) = ; the first derivative of the continuous-time unit step

5 Dept. of Electronics Eng. -13- DH26029 Signals and Systems



du (t
v’ Interpretation of & (t) = u(t)

t
0 Ba(t)

[ ~—

0 A t 0 A t
Figure 1.33  Continuous approximation to Figure 1.34 Derivative of
the unit step, us(1). UA(t).
du,(t) A0
A . -
O, (1) = > ot)=lim o.(®)
dt A—0
3 k| Dept. of Electronics Eng. -14- DH26029 Signals and Systems
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[ ks()dz =ku(t)

3(t) ka(t)
KA
1
0 t 0 t
Figure 1.35 Continuous- Figure 1.36 Scaled im-
time unit impulse. pulse.
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v Graphical interpretation (Fig. 1.38, p. 35)

u®)=[ 8(r)de=[ 8(t-o)(-do)

e ut) = j:&(t—a)da

v X()S(t) = x(0)S(t)

v X()o(t —1,) = x(t,)o(t —t,)|; Sampling property of the unit impulse

5 Dept. of Electronics Eng. -16- DH26029 Signals and Systems



1.5 Continuous-Time and Discrete-Time Systems

X(t) Continuous-time . y(t)
system

\ 4

x[n] ~ y[n]

Dept. of Electronics Eng. -17- DH26029 Signals and Systems




1.5 Continuous-Time and Discrete-Time Systems

Example 1.8 - RC Circuit

Figure 1.1 A simple RC circuit with source
voltage vs and capacitor voltage v..

Vs (t) — Ve (t) I(t) —C ch (t)
R dt

i(t) =

dv, (1)

" V. (t) ——V s (1)

;;, Dept. of Electronics Eng. -18-
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1.5 Continuous-Time and Discrete-Time Systems

Example 1.9 (Fig. 1.2, p. 2)
B o

_ o V() -
f()=m " + pv(t)

d Figure 1.2 An automobile responding to an
V(t) n 1% V(t) _ 1 f (t) applied force f from the engine and to a re-
dt m m tarding frictional force pv proportional to the
automobile’s velocity v.

Example 1.10 - discrete system(balance in a bank account)
y[n]=1.01y[n—-1]+ X|n]
y[n]—1.01y[n—1] = X[n]

-19- DH26029 Signals and Systems
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1.6 Basic System Properties

1.6.1 Systems with and without memory

Memoryless system
y[n] = (2x[n]—x*[n])*

y(t) = x(t)
y(t) = RX(t)
y[n] = x[n]

System with memory

n

y[n]= > x[k] y[n] = x[n—1]

kK=—o0

v =< [ x()dz

n—1
y[nl= > x[kl+xn] <> y[n]=y[n—1]+x[n]
WE—”% K=—o0
l\%’ E‘ Dept. of Electronics Eng. —20- DH26029 Signals and Systems



1.6.2 Invertibility and inverse systems

Invertible systems (one-to-one mapping)

yin] Inverse
X[N] ==l  Systemn [y system - w[n] = x[n]
(a)

t

Y

x(t) ——>{ y{t) = 2x(%

(b)

- W[N] = X[N]

n yln]
Xp=—=>1 vyl = > xIK 1 win] = yIn] - yin —1]

(c)

Figure 1.45 Concept of an inverse system for: (a) a general invertible sys-
tem; (b} the invertible system described by eq. (1.97); (c) the invertible system

defined in eg. (1.92).

yIn]=0  y()=x*(t)

DH26029 Signals and Systems

Noninvertible systems

o EFO;
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1.6.3 Causality

Causal system

- The output at a time depends only on the input values at that
time and up to that time.
- Non-anticipative

Non-causal system
y[n] = X[n]— X[n+1]
y(t) = x(t+1)

5 Dept. of Electronics Eng. —22- DH26029 Signals and Systems



Example : Moving average, filtering of discrete sequences - non-causal

ylnl=->-—— kZ;AX[n —K]

Example 1.12

y[n] = X[—N] ; non-causal

y(t) = x(t) cos(t +1) ; causal memoryless

5 Dept. of Electronics Eng. —23- DH26029 Signals and Systems




1.6.4 Stability

Ll L

x(t)

x(t)

S Figure 1.46 (a) A stable pendulum;
(b) (b) an unstable inverted pendulum.
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Example 1.13

Stability : BIBO (bounded input bounded output) Stability

y(t) =tX(t)  Unstable system

y(t) =e*®  Stable system

5 Dept. of Electronics Eng. —25- DH26029 Signals and Systems



1.6.5 Time Invariance

Input x(t) < output y(t)
input x(t—-t,) < output y(t-t,)

Example 1.15 : time-varying system

yln] = nx[n]

s Dept. of Electronics Eng. —26- DH26029 Signals and Systems



X4(t) y1t)

Example 1.16
y(t) = x(2t) LIl B

X () =y, (t) theny,(t) =x(2t) 0=t 0
Let x,(t) =X (t—t;) = y,(t)

Check y, (t) = V,(t—t,) ?
Y, (t) = X, (2t) = X1(2t _to) 1
— X1(2(t _t?o ) 1 3 t

[
- y]_ (t 2 Figure 1.47 (a) The input x (1) to the system in Example 1.16; (b) the
output y, () correspanding to x(1); {¢) the shifted input () = x{t — 2);
(d) the output y»(t) corresponding to x(f); (e} the shifted signal y,(t — 2).
Note that y»(f) # yi(t — 2), showing that the system is not time invariant,

e yl(t _to)

3 l§ Dept. of Electronics Eng. 27— DH26029 Signals and Systems
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1.6.6 Linearity

For any complex constants a and b,
continuous time : ax, (t) +bx, (t) — ay, (t) +by, (t)
discrete time : ax,[n]+bx,[n] — ay,[n] +by,[n]
Superposition principle (Additivity + Homegeneity)

Example 1.17 - 1.20 Is the system linear?
y(t) =tx(t) linear
y(t) =x*(t) Non-linear

The difference between the responses to any two

y[n] = Re{x[n]} Non-linear inputs to an incrementally linear system is a linear
function of the difference between two inputs.

y[n]=2x[n]+3 Non-linear  incrementally linear system

%
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