7 Sampling

7.1 Representation of a continuous-time signal by its samples : The sampling theorem

Sample → Continuous-time signal : not unique * For a Band-limited signal → unique restoration

7.1.1 Impulse-train sampling

$$x_p(t) = x(t)p(t)$$

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$$

$$x_p(t) = \sum_{n=-\infty}^{+\infty} x(nT)\delta(t - nT)$$

$$X_{p}(j\omega) = \frac{1}{2\pi} [X(j\omega) * P(j\omega)]$$

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$$

Continuous-time Fourier Transform $\omega_s = \frac{2\pi}{T}$

$$P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_s)$$

$$X_{p}(j\omega) = \frac{1}{2\pi} [X(j\omega) * P(j\omega)]$$

$$X_{p}(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_{s}))$$

• Sampling Theorem:

Let x(t) be a band - limited signal with $X(j\omega) = 0$ for $|\omega| > \omega_M$.

Then, x(t) is uniquely determined by its samples x(nT), $n = 0,\pm 1,\cdots$,

if

$$\omega_{s} > 2\omega_{M}$$
,

where

$$\omega_s = \frac{2\pi}{T}$$

Exact recovery of a continuous-time signal from its samples

7.1.2 Sampling with a zero-order hold

$$H_0(j\omega) = e^{-j\omega T/2} \left[\frac{2\sin(\omega T/2)}{\omega} \right]$$

Zero-order hold with a reconstruction filter

 ω

7.2 Reconstruction of a signal from its samples using interpolation

• One simple interpolation procedure: zero-order hold

• Linear interpolation

- More complicated interpolation formulas: higher order polynomials or other mathematical functions
- Interpolation by ideal low-pass filtering

$$x_r(t) = \sum_{n = -\infty}^{+\infty} x(nT)h(t - nT) \qquad h(t) = \frac{\omega_c T \sin(\omega_c t)}{\pi \omega_c t} \qquad \left(\omega_c = \frac{\omega_s}{2}\right)$$

$$x_r(t) = \sum_{n=-\infty}^{+\infty} x(nT) \frac{\omega_c T}{\pi} \frac{\sin(\omega_c (t - nT))}{\omega_c (t - nT)}$$

Interpolation by ideal low-pass filtering ——> Band-limited interpolation

- Zero-order hold: discontinuous signal
- First-order hold (linear interpolation): continuous signal, discontinuous derivative
- Second-order hold: continuous signal, continuous first derivative, discontinuous second derivative

First-order hold

First-order hold

7.3 The effect of undersampling : aliasing $(\omega_s < 2\omega_{\scriptscriptstyle M})$

$$x(t) = \cos \omega_0 t$$

b)
$$\omega_0 = \omega_s / 6$$
 $x_r(t) = \cos \omega_0 t$

c)
$$\omega_0 = 2\omega_s / 6$$
 $x_r(t) = \cos \omega_0 t$

d)
$$\omega_0 = 4\omega_s / 6$$
 $x_r(t) = \cos(\omega_s - \omega_0)t$

e)
$$\omega_0 = 5\omega_s / 6$$
 $x_r(t) = \cos(\omega_s - \omega_0)t$

f)
$$\omega_0 = \omega_s \quad x_r(t) = 1$$

If
$$x(t) = \cos(\omega_0 t + \phi)$$

- amplitude of solid line : $\pi e^{j\phi}$
- amplitude of dashed line : $\pi e^{-j\phi}$

if
$$\omega_0 = 4\omega_s / 6$$
,
then $x_r(t) = \cos((\omega_s - \omega_0)t - \phi)$

- Examples of the effect of undersampling (aliasing)
 - > Strobe effect (p. 533, Fig. 7.18)
 - ➤ The wheels of a stagecoach in Western movies
- Note) Irrespective of aliasing, $x_r(nT) = x(nT), n = 0, \pm 1, \pm 2, ...$

7.4 Discrete-time processing of continuous-time signals

$$x_d[n] = x_c(nT)$$
 $y_d[n] = y_c(nT)$

< Notation for continuous-to-discrete-time conversion and discrete-to-continuous-time conversion>

Sampling with a periodic impulse train followed by conversion to a discrete-time sequence

Normalization in time (scaling in time)

cf.) Fig. 1.12 at p.9

 ω : continuous - time frequency variable

 Ω : discrete - time frequency variable

$$X_{p}(t) = \sum_{n=-\infty}^{+\infty} X_{c}(nT) \delta(t-nT) \xrightarrow{\text{CTFT}} X_{p}(j\omega) = \sum_{n=-\infty}^{+\infty} X_{c}(nT)e^{-j\omega nT}$$

$$X_{d}[n]$$

$$X_{d}(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} X_{d}[n]e^{-j\Omega n} = \sum_{n=-\infty}^{+\infty} X_{c}(nT)e^{-j\Omega n}$$

$$X_{d}(e^{j\Omega}) = X_{p}(j\Omega/T)$$

$$\Omega = \omega T$$

Since
$$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c(j(\omega - k\omega_s)),$$

$$X_d(e^{j\Omega}) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c(j(\Omega - 2\pi k)/T)$$

$$X_d(e^{j\Omega}) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c(j(\Omega - 2\pi k)/T)$$

