

데이터베이스 및 설계

Chap 4. 관계 데이터베이스 (#2/2)

Key 哭 integrity constraints

2012.04.09.

오병우

컴퓨터공학과

Introduction

무결성, 완선한 상태, soundness

제약

Integrity rule

► To inform the DBMS of certain constraints in the real world, so that it can prevent impossible configuration of values from occurring

- **♦** (ex)
 - (1) supplier numbers must be of the form Snnnn
 - (2) part numbers must be of the form Pnnnn
 - (3) supplier status values must be in the range 1-100
 - (4) part weights must be greater than zero
 - (5) shipment quantities must be a multiple of 100
- Two general integrity rules (apply to every database)
 - ♦ Entity integrity rule ··· primary key
 - Referential integrity rule foreign key

Key

- 일반적인 의미
 - ◈ 자물쇠를 푸는 열쇠
 - ◈ 중요하고 핵심적인 부분 (key man)
- Relation에서의 의미
 - ◈ 투플을 유일하게 식별할 수 있는 애트리뷰트 집합
 - ◈ 애트리뷰트 전부를 사용해도 식별 가능하기는 함
 - ◈ 일반적으로는 애트리뷰트의 일부를 사용함
- 흔히 혼용해서 사용
 - ◈ Primary Key 또는 Candidate Key로 혼용하므로 문맥의 의미를 파 악하고 유의해야 함

Candidate key

- ◑ 후보키
 - ◈ 무엇에 대한 후보? 정답) Primary Key
- Attribute K (possible composite) of R: candidate key
 - it satisfies the following two time-independent properties:
 - 릴레이션 $R(A_1, A_2, ..., A_n)$ 에 대한 애트리뷰트 집합 $K = \{A_i, A_i, ..., A_k\}$ 로서 아래 성질을 만족하면 후보키
 - ◆ 1. uniqueness: (s#, CITY)
 - At any given time, no two tuples of R have same value for K
 - ◆ 2. minimality: (s#)
 - If K is composite, then no component of K can be eliminated without destroying the uniqueness property
 - 필요없는 attribute가 있으면 candidate key가 아님 (super key라고 부름)
 - * every relation has at least one candidate key

(∵ no duplicate tuples)

임의로

Primary key

- Primary key
 - ◆ 후보 키(candidate key) 중에서 데이터베이스 설계자가 지정한 하나의 키
 - One (arbitrarily) chosen key from the set of candidate keys
 - Every relation has a primary key

Tuple-level addressing mechanism (→some specific tuple)

P 릴레이션에서 P#가 Primary Key일 경우

– (ex) P(<u>P#</u>, PNAME, COLOR, WEIGHT, CITY)

SELECT *

JLLLCI

FROM P

WHERE P# = 'P3';

(at most) one tuple

SELECT *

FROM P

WHERE CITY = 'Paris';

unpredictable number of tuples

Alternate key

Alternaté key

대체

◆ A candidate key that is not the primary key

후보

- ◆ Example: S(S#, SNAME, STATUS, CITY)
 - 1. candidate key: S#, SNAME
 - 2. primary key: S#
 - 3. alternate key: SNAME

Key 값을 주소로 사용

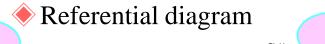
- Relational model requires "associative addressing"
 - ◈ 주소가 아닌 값으로 tuple을 select 가능
 - ♦ All relational addressing clearly is associative (i.e., value-based, not position-based)
 - At logical level
 - no associative hardware in physical level
- 정리하면: Candidate Key = Primary Key + Alternate Key

The Entity Integrity Rule

- Entity integrity rule
 - No component of the primary key of a base relation is allowed to accept nulls
 - ◈ Primary key는 null 일 수 없음
- Null (not exist, unknown) (≠ blank or zero)

- ♦ Information is missing for some reason
 - (e.g., the property does not apply, or the value is unknown, etc.)

- ♦ A value or representation that is understood by convention not to stand for any real value of the applicable attribute
- ◈ 정보 부재를 명시적으로 표현하는 특수한 데이터 값
 - ① 알려지지 않은 값 (unknown value)
 - ② 해당 없음 (inapplicable)


Foreign key

Referencing relation

- Foreign key (no converse: 반대로는 안됨)
 - An attribute (possibly composite) of one relation R2 whose values are required to match those of the primary key of some relation R1
 - R1 and R2 not necessarily distinct

Referenced relation (taraet relation)

- Attribute FK (possible composite) of base relation R2: foreign key
 - it satisfies the following two time-independent properties:
 - 1. each value of FK is either wholly null or wholly nonnull
 - 2. there exists a base relation R1 with primary key PK such that each nonnull value of FK is identical to the value of PK in some tuple of R1

R2 S#

for P#

 $S(S\#, SNAME, STATUS, CITY) \leftarrow SP(S\#, P\#, QTY) \rightarrow P(P\#, PNAME, COLOR, WEIGHT, CITY)$

R1

for

S#

Foreign key

Points

- ♦ 1. foreign key and corresponding primary key: the same underlying domain
- ◆ 2. foreign key need not be a component of the primary key in the referencing relation
 - DEPT (<u>DEPT#</u>, ···, BUDGET, ···) : 여기에서는 primary key
 EMP (<u>EMP#</u>, ···, **DEPT**#, ···, SALARY, ···) : 여기에서 DEPT#는 primary key가 아님
- ♦ 3. a given relation can be both a referenced relation and a referencing relation
 - $-R_n \rightarrow R_{(n-1)} \rightarrow R_{(n-2)} \rightarrow \cdots \rightarrow R_2 \rightarrow R_1$: referential path
- ♦ 4. relations R₁ and R₂ are not necessarily distinct
 - EMP(EMP#, ···, SALARY, ···, MGR_EMP#, ···) : MGR_EMP#는 팀장 (6번 참조)
- ♦ 5. referential cycle
 - $\ R_n \longrightarrow R_{(n\text{-}1)} \longrightarrow R_{(n\text{-}2)} \longrightarrow \cdots \longrightarrow R_2 \longrightarrow \ R_1 \longrightarrow R_n$
- ♦ 6. foreign keys sometimes have to accept null (not exist)
 - Value of MGR_EMP# for the president (사장은 null)
- ♦ 7. foreign-to-primary-key match
 - Certain relationships between tuples

Unknown 이 아니라 not exist

확실한, 틀림없는

The Referential Integrity Rule

- Referential integrity rule
 - Referential integrity rule
 - The database must not contain any unmatched foreign key value (if B references A, then A must exist)
- S, P, SP에서 S의 S# 변경 시에 SP를 어떻게 처리?
 - ◈ 특정 tuple의 S#를 S1에서 S6로 변경할 때 처리 방법
 - _ 허락하지 않음
 - S#에서 변경후 SP에서도 변경
 - S#에서 변경후 SP에서 대응값은 NULL로 처리

Foreign Key Rules

- Three questions for foreign key
 - \bullet 1. can that foreign key accept nulls ? \rightarrow possible
 - ◆ 2. an attempt to delete the target of a foreign key reference
 - 1) RESTRICTED: if no matching referencing tuples (otherwise, rejected)
 - 2) CASCADES: cascades to delete the matching referencing tuples (ex) $R3 \rightarrow R2 \rightarrow R1$ with CASCADES DELETE on a given tuple of relation R1

연쇄, 폭포처럼 흐르다

- 3) NULLIFIES: set to null in the foreign keys of the matching referencing tuples
- ◆ 3. an attempt to update the primary key of the target of a foreign key reference
 - 1) RESTRICTED: if no matching referencing tuples (otherwise, rejected)
 - 2) CASCADES: cascades to update the matching referencing tuples
 - 3) NULLIFIES: set to null in the foreign keys of the matching referencing tuples

example

● 대학(University) 관계 데이터베이스

학생 (STUDENT)

	<u>학번</u> (Sno)	이름 (Sname)	학년 (Year)	학과 (Dept)
)	100	나 수 영	4	컴퓨터
	200	이 찬 수	3	전기
	300	정 기 태	1	컴퓨터
	400	송 병 길	4	컴퓨터
	500	박 종 화	2	산공

과목 (COURSE)

<u>과목번호</u> (Cno)	과목이름 (Cname)	학점 (Credit)	학과 (Dept)	담당교수 (PRname)
C123	프로그래밍	3	컴퓨터	김성국
C312	자료 구조	3	컴퓨터	황수관
C324	화일 구조	3	컴퓨터	이규찬
C413	데이터베이스	3	컴퓨터	이일로
E412	반 도 체	3	전자	홍봉진

example

● 대학(University) 관계 데이터베이스(cont'd)

등록 (ENROL)

<u>학번</u> (Sno)	<u>과목번호</u> (Cno)	성적 (Grade)	중간성적 (Midterm)	기말성적 (Final)
100	C413	А	90	95
100	E412	Α	95	95
200	C123	В	85	80
300	C312	Α	90	95
300	C324	С	75	75
300	C413	Α	95	90
400	C312	Α	90	95
400	C324	Α	95	90
400	C413	В	80	85
400	E412	С	65	75
500	C312	В	85	80

예제

● R1 ≠ R2인 경우 교수 (교수번호, 교수이름, 학과번호, 직급) 학과 (<u>학과번호</u>, 학과이름, 학과장교수번호, 학생수) PK FK 학생 (<u>학번</u>, 이름, 학년, 학과) 과목 (과목번호, 과목이름, 학점, 학과, 담당교수) 등록(학번, 과목번호, 성적) FK FK ● R1 = R2인 경우 교수1 (교수번호, 교수이름, 학과번호, 학장교수번호)

PK

FK

Summary: Integrity Constraint

- (1) 개체 무결성 (entity integrity)
 - ◈ Primary key 값은 언제 어느 때고 null값을 가질 수 없다.

Garbage (쓰레기) 개념과 비슷

Dangling Reference 개념과 비슷

- (2) 참조 무결성 (referential integrity)
 - ◈ Foreign key 값은 참조된 relation의 primary key 값이거나 null이다.
- 데이터베이스 상태(database state)가 항상 만족되어야 함
 - ◆ DBMS는 데이터베이스 상태의 변화에도 항상 무결성 제약을 만족시키 도록 해야 함
 - ◈ 어느 한 시점에 데이터베이스에 저장된 데이터 값
 - Database instance
 - ◈ 데이터베이스 상태 변화: insert, delete, update 연산

