Chapter 4 Viscoelasticity

4.1 Introduction
P Glassy state of polymer = elastic (more likely)
Instantaneous deformation + perfect recovery upon removal of stress
at small strain
» Melt state of polymer = viscous (more likely)
Needs time for deformation and no recovery
» Rubbery state of polymer (not crosslinked ones) = viscoelastic

Partially flow, partially recovered, more importantly time dependent

See Figure 4.21 for G vs T relationships for three representative engineering

polymers.
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4.21 Dependence of the shear modulus on temperature for three representative engineer-
ing polymers: natural rubber (cross-linked); PVC (essentially amarphous and not cross-linked);
and nylon 6 (crystalline). The temperatures at which these polymers are used in technology
are indicated (s—s—s—e—s) (after Wolf). :

Fig 4.21 here



Constitutive relationship

» For 100% elastic materials;
t=Gy, o=Ee (E=30)
» For 100% viscous materials,

— a3y
T=N5
n = Constant (Newtonian)
n=n (|%|) (for non — Newtonian)

(See LN 183 for shear dependent viscosity, especially the power-law model).

logn A Shear thickening Figure 7.1 ViSCOSiLy behavior as pre-
n=my* Ln>1 dicted by the power-law generalized
Newtonian fluid model.

Newtonian .0
/ n=myp-,n=1

Shear thinning
n=my" Ln<i

[
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4.2 Nature of viscoelasticity
4.2.1 Creep
A constant stress (o =0,) applied to a polymer sample (viscoelastic material)

causes deformation (y) which increases with time (=Creep).

Yy « time (certain function of)
Y < o (Large stress gives large strain at the same time)

Then
j© =12 (43)
J(t)= Creep compliance (More concerned with strain as modulus with

stress)



Figure 4.1 shows the following linear relationship is hold (linear viscoelasticity).
J(v) = y;—(t) = y;—(t) (same slope) 4.2)
1 2

J(t) is independent of ¢ but depends on t (Fig. 4.1d):
@ low decades of time (Jy) and high decades of time (Jg) ] is almost

constant.
@ middle decades of time J(t) strongly depends on time. (Relaxation)

Ju = Unrelaxed compliance

Jr = Relaxed compliance

The "relaxation" (stress, strain, morphology) is centered at the middle decades of

time which corresponds to glass-rubber transition.
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4.1 Linear viscoelastic creep: (a} constart stress o, applied at t=0 leads to time-
dependent strain v,(t); (b} a higher stress o, applied at t=0 leads to time dependent strain
72(t); (c) from (a) and (b} the strains at t,, y(t,}, and attime ¢, ¥(t,), are linear in the stress;
(d} the observed dependence of J(t) (eqn 4.3) on log ¢ through one complete relaxation. J,,
and Jy, are the unrelaxed and relaxed compliances, respectively.



Note that the linear relationship is hold at small strain (Figure 4.2).

For tensile test the creep compliance is defined as:
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y(t,), and at t,, (i)

viscoelastic behaviour. Note that this is not t

conventional stress—strain test; the data are
stresses.

4.2 Isochronals taken at t, (see Figure 41) after the initiation of the creep experiment,
The diagram illustrates the transition from linear to non-linear
- he y-o plot that would be obtained in a

taken

from creep experiments at different

Experimental determination of J(t)= Thin walled tube
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4.3 A thin-walled tube twisted by a torgue I': the shear stress in the tube is ¢. The rotation
of one end with respect to the other is @ and the shear strain is y. if the tube is viscoelastic,

then both quantities depend on time, #{t) and ¥{t).

Fig 4.3 here



Thickness of tube wall= s « radius(r)
length =1
Apply constant torque (I

[= (27rs)o * r = 27r2so 4)

=0 = (Constant) (5)
Shear strain Changes with time as
8
y(®) == (6)
Compliance
y(©® rel(t) 2mrds, 0(t)
JO == o= Sk

As tT-> B8()T-J() 1T
Alternatively in design, 6(t) can be predicted using J(t) data.

Ex. 4.1
Specimen length = 200 mm B, 0.5 mm extended in 100s
Cross sectional area=25x3 mm?

D(100s)?
Solve. D(t) = ?
€(100) %Jooéso_ozoo —10 M’
D(100) = pa— SEoN =75x%x10 N
(25><3)mm2(10010%)2
_ —10 1 10'°Pa
=75x%x10 e
=7.5GP™1

Students practice Ex 4.2.



Fig. 4.4 J(t) of linear PE between 15-75°C.
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4.4 Shear compliance J(t) of linear polyethylene at different temperatures in the region of
the e-relaxation. Measurements are taken at times between 0.8 and 2000 s. The data are
plotted against log ¢, as a plot against ¢ will not reveal the significant differences in the shape
of the curves at different temperatures (after McCrum and Moarris).

Fig. 4.4 here
Note : The creep (called a relaxation) is centered at 46°C, i.e. the slope of log
J(t) vs log t is greater at 46°C than any other temperatures in
107! — 10%*s (Detailed in 4.3).

—Characteristic relaxation time of chain=Experimental time at 46°C.

4.2.2 Stress Relaxation
Stress rlxn : Stress to hold the specimen at constant strain decreases with time.

(Deformed chains are relaxed with time) (See Fig 4.5)
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4.6 Linear viscoelastic stress relaxation: (a) constant strain y, applied at t=0 leads lo a
time-dependent stress oy(t); (b) a higher strain y, applied at t=0 leads to time-dependent
stress a(t); () from (a) and (b) the stresses at time t,, o(t,), and at time t,, olt,), are
linear in the strain; (d) the observed dependence of G(t) on log t through one complete
relexation. G, and Gg, are the unrelaxed and relaxed moduli, respectively.

Fig 4.5 here (See also 4N3 for plastic bolt)
oxXYy
o(t) = G(t)y G : Shear modulus

o1(® _ 020 _ G(t) G : Independent of y
Y1 Y2




Note G, '=J, Gr'=Jg
But G~ #]J(t) in general

G(t) is determined by the thin wall tube as above for creep.

Fig. 4.6 Transition from linear to nonlinear stress relaxation behavior

Linear

4.6 Isochronals taken at {, (see Figure 4.5) after the initiation of the stress relaxation
experiment, u(ra_), and at t,, o(t,). The diagram illustrates the transition from linear to
non-linear behaviour. Note that this e—y plot cannot be obtained in a conventional

stress—strain experiment: it must be obtained by a series of stress relaxation experiments, as
ilustrated in Figure 4.5.

Stress relaxation modulus for tensile test
E() = 72 (14)
€ = const(= ?)
Fig. 4.7 Stress relaxation modulus in tension for polyisobutylene

Maximum slope @ -66°C —Relaxation is centered at 66°C
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4.7 Stress relaxation modulus observed in tension E(t} of polyiscbutylene at different
temperatures in the region of the glass-rubber relaxation (Tg=—80°C). At —83°Q at short
time, E£(t) approaches asymptotically the modulus of the glass; at —40°C at Iong time, E(EJ
approaches asymplotically the modulus of the rubber. The relaxation is centred in the region
of —66°C. Note the immense reduction in E(t) of over 3 decades in a temperature fise of
43°C: this behaviour is typical of amorphous polymers at the glass-rubber relaxation.



4.2.3 Dynamic Properties

linear viscoelastic range

Input=Strain Output=Stress

Y = Yosinwt  (15) 0 = o0psin (wt+6) (16)
The output is also sinusoidal but with different phase angle.

Figure 4.8 here

A 0=0,sin{ wi+§)

N Y=Y, Sin wt

t
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4.8 Vector representation of an alternating stress leading an alternating strain by phase

angle &.
2 Extremes
100% elastic T = Gy = Gy,sinwt = 0,sin wt in phase with y
[100% viscous T=ny= n% = NYowcoswt 90° out of phase with y
For viscoelastic materials 0 < § < 90°
Rewrite (16) Trig identity: [sin(a + B) = sinacosp + cosasinf]

0 = oycosdsinwt + (0ysind)coswt (17)
sinwt term: in phase with strain
coswt : out of phase
0 = o;sinwt + o,coswt (17)

where, 0; = 0,c0s8 , 0, = 0,sind

Define

G' = % = %COSS (18)
0 0

G" =2 =2ins (19)
Yo Yo

Then (17)" becomes
0 = Yo(G'sinwt + G coswt)



Complex notations

Y =vypel®t (20)

Then

o = 5,el@t+d) 1)

- G* = _ 90e @D 20 16 — :—E(COSS +sind) = G’ +iG"” (22-24)

yoel®t Yo

o

Y

Q Phase of modulus is based on strain!
G* = complex (shear) modulus

G' = storage (shear) modulus

G" = loss (shear) modulus

!

tand = (é— (loss tangent)

Alternatively for Complex compliance

0 = 0ysinwt +—Base phase
Y = Yosin (wt + 9)

— v = (yocos8)sinwt + (y,sind)coswt (A)
= y;Sinwt + vy, coswt (A’
Y1 = YoC0SS
Y2 = YoSind
Define
r_Y1_ Yo
J' = o o cosd (B)
Jr =22 = Yoging
Op Op
(B) — (A)

Y = 0o(J'sinwt + ] coswt) ©

tans = ﬂ (out of phase amplitude
T in phase amplitube
Complex notation
J" = Z— = ?e_ia = z—o (cosb —isind) =]' —i]"” (25-27)
0 0

G” rn 1 t

tané = ra = ]]_, (Stooris par ) (28)
ge part

(]* = Gl by definition But] # % in general)

100% elastomer: tand = 0

As Temp 1 — tand 1 (friction— viscous dissipation)



Students practice Ex 4.3.

Determination of complex modulus by torsion pendulum (Figure 4.9)_

Scan Figure 4.9 here
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4.9 Torsion pendulum for the determination of shear modulus and damping as functions of
temperature at frequencies around 1 Hz; the support wire has negligible torsional rigidity
(after Struik).

Oscillation frequency (w)
I
=[5 (4.30)

M=Moment of inertia

[1=Torque produced by the specimen for unit rotation (©=1)
[1is given by

M= 6D

where N=ma%/2




The resonant oscillation at frequency w decreases. The ratio of successive

amplitude A, and An.1 yields the logarithmic decrement and tand as

_ An
A=1 Anit (32)
A =Ttan 8 (33)

Dynamic properties are commonly determined by DMTA (now DMA).-Students

will practice DMTA measurements during Polymer Processing Experiment.

See and interpret dynamic data in Figures 4.10, 4.11, 4.12
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4.10 Frequency dependence of the dynamic shear modulus G'lw) ‘oi polyisobutylena at
different temperatures in the range —45°C to +100°C. This relaxation is the glass-to—rupt_aer
relaxation: it is observed here centred in the region of —10°C, well above the glass transition
(—~B0°C) because of the high frequency of observation. The measurements were by forced
oscillation (after Fitzgerald, Grandine, and Ferry).

Figure 4.11
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4.11  Temperature dependence of shear modulus G* and logarithmic decrement A as a
function of temperature for poly(methyl methacrylate) at constant frequency near 1 Hz. The
a-relaxation is due to the onset of movement of the main backbone of the molecule; the
B-relaxation is due to the onset of hindered rotation of the side group. The polymer glass, at
temperatures where the side group is mobile, is more ductile than at the lower temperatures
when its movement is frozen in. Measurements taken by torsion pendulum (after Schmieder

and Wolf).
Figure 4.12
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4.12 Temperature dependence of the shear modulus G’ and logarithmic decrement A of
linear {(LPE) and branched (BPE) polyethylene. Measurements by torsion pendulum at
frequency ~1 Hz. The relaxation processes are labelled a for that at the highest tempera-
ture, B for that at the next highest temperature, and so on. The observation of the a-process
in creep for LPE is shown in Figure 4.4 (after Flocke).



Viscoelastic Model

Maxwell model (Series)

Spring: o4, € o, = Eg;
Dash pot: o,, €, 0, = n%

020-1:0-2

€ = €1 + 62
Differentiation
de _ de; de; ldcl 1

dt  dt ' dt E dt '
de _1do 1

> &g tiO (0, = 0, =0) D.E for Maxwell model
For creep

o =0y, (Imposed) = % =0 @ (1)

How does e(t) change with time ?

de 1 € tog 4,7
& loy= [Cde=[Zdt
dt n 0 feo fO n

(¢ o o .
€—€0=?0t$€=€0+?0t € = (i.c)

€= 60+E:’1—Et= eo(1+£)

@t =1,€ = 2¢,

B y

I =

i, L
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Sperling Fig 10.3 & 10.4 here

Stress relaxation

e(t) = ¢, = const, we look at §(t) ?

(1)



de 1do o

dt Edt 1

de . .
i 0 for stress relaxation experiment
ldo _ o
Edt 1
do_ _E
o
t E E

lnclgozfo—ﬁdtz—ﬁt+0

o E t _t
In—=—-—-t=—-- — o=o04e t (0p =Ee

= —ft=—1 0e (00 = Eey)

(T = % = relaxation time)

M
nl=lg ML

tl=l M> Lt ML
El=l1%
Voigt model
Spring (elastic) o, = Eg;
Dashpot (viscous) 0, = n%
0=0,+0,
€ = 61 = 62

0=01+02,0=Ee+n% (e=€=¢€y)

DE for Voigt

Creep analysis

0 =0, = const e(t) ?

(0o — Ee)dt = nde, — E(% — e) dt = de
_ de
Do

Integration

E [t __ € der E _ 60/E
;fo dt = J, e} b (e (g)t =In (5

E fo- = IH(E E) E
(z<)
n T T E
E E L
Si=h@D - wh=
E—E ?—6

=t <«so t is called relaxation time



