
# Chapter 17 Inventory Control (재고관리)

#### <1> Introduction

#### (1) Definition of inventory

Inventory is the stock of any item or resource used in an organization and can include: raw materials, component parts, work-in-process, and finished products.

#### \* Inventory and Flow of material



## (2)Independent demand & Dependent demand (p.549)

- ① 독립수요품목: 완제품, 예비품목 (수요: 시장조건)
  - . stationary
  - . 보충(replenishment)의 개념
  - . safety stock 필요
- ② 종속수요품목:원자재,부품 (수요:생산계획)
  - . lumpy
  - . 소요(requirement)의 개념
  - . safety stock 불필요

- (3) Functional classification of inventory (p.445)
- ① Fluctuation inventory covers fluctuations in both demand & supply
- ② Lot size inventory (Cycle inventory, 주기재고): EOQ to minimize the total preparation (ordering, set up) & carrying costs
- ③ Hedge inventory price of material의 상승이 예견 될 때
- ④ Anticipation inventory peak demand, vacation shut downs, possible strikes 등에 앞서 미리 축적하는 stock

⑤ Seasonal inventory계절적 주기 흡수

⑥ Decoupling inventory 각 생산활동을 독립적으로 수행하게 해 줌

⑦ Transportation inventory
(pipeline inventory, transit inventory, 보급선재고)
material between plants or between manufacturing &
distribution facilities

#### (4) Objective of inventory management

- \* 각 기능 부서에 따라 상충 (Managing inventory means managing conflict)
- Define and attain a desired customer service level
- Achieve a desired return on investment (Keep inventory investment below a certain level)
- Support the achievement of specified operating efficiency (equipment utilization level)

\* Inventory turnover rate (ITR, 재고회전율): pp.566-567

$$ITR = \begin{array}{c} annualized \ CGS \\ \hline inventory \ investment \end{array}$$

(cf) 재고회전율이 1년에 3번 = 재고투자회수기간 (inventory recovery period)이 4개월

(cf) Return on investment :
 ROI = (income-costs) / (investment)

#### <2> Inventory control models

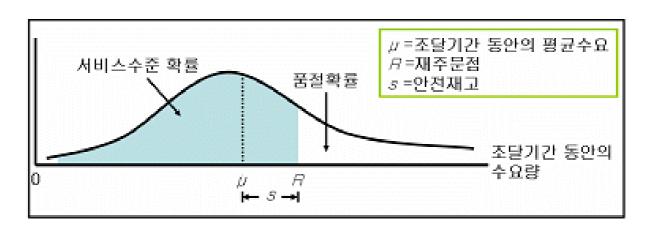
- (1) Decision variables
- 1 Order release timing: When should the inventory be replenished?
  - . Scheduling period (T)
  - . Reorder point (R)
- 2 Lot size: How much should be added to inventory?
  - . Order quantity (Q)
  - . Order level (M)
- \* periodic review vs. continuous review

#### (2) Inventory Control Systems

- ① Single-Period Inventory System(pp.551-555)
- 2 Multi-Period Inventory System(pp.555-570)
- Fixed-Order Quantity Models (고정주문량모형)
- Fixed-Time Period Models (고정기간모형, 정기주문모형)

- (3) 재고결정에 연관된 비용들 (pp.548-549)
- ① Item costs : C . cost of an item (cf) quantity의 함수일 수도 있음
- 2 Preparation costs
  - ordering cost :C<sub>o</sub>
  - set-up cost :C<sub>s</sub>
- ③ Inventory carrying(holding) costs: C<sub>h</sub>.cost of capital invested in inventory.cost of storage (handling, security, space, record,...).cost of obsolescence, pilferage, deterioration,...
- 4 Stock out costs: C<sub>b</sub>
  - Backorder 상황
  - Non backorder 상황

- <3>고정 주문량 모형 (pp.556-564)
  - (1) 확정적 모형: EOQ (economic order quantity), <도표 17-4>
- ① 가정: p.558 (D, L, C, C<sub>o</sub>, Q, R)
- ② EOQ, ROP 의 유도: <그림 17-5> D= annual demand rate


$$Q^* = \sqrt{\frac{2 C_o D}{C_h}}$$
 ,  $R = D \times L$ 

③ EOQ모형의 민감도 분석

(2) 확률적 모형: 안전재고를 고려한 고정 주문량 모형, <도표 17-6>

- \* risk & uncertainty: variations in demand & lead time\*absorbed by provision for safety stock (buffer stock)
- \* desired service level  $(1-\alpha)$ :

재고로부터 바로 충족되는 고객수요의 백분율 (서비스수준)  $\alpha = \text{stockout probability}(품절확률)$ 



 $\overline{D}$  = 연간 평균 수요율

d=(조달기간에 사용한 단위와 동일단위 기간당) 수요량,  $d\sim(\overline{d}$  ,  $\sigma_d^2$  )

X =조달기간(L)동안의 수요량,  $X \sim (\mu , \sigma^2 )$ ,  $\mu = \overline{d} L$ ,  $\sigma^2 = \sigma_d^2 L$ 

EOQ: 
$$Q^{\bullet} = \sqrt{\frac{2 C_o \overline{D}}{C_h}}$$

$$ROP : R = \mu + S = \overline{d} \times L + S$$

X가 정규분포이면,  $R = \mu + z_a \sigma = \overline{d} \times L + z_a \sigma_d \sqrt{L}$ 

\* Application: two bin system

(2) 고정주문량모형의 재고회전율 (pp.566-567)

#### <4>고정 기간 모형 (pp. 564-567)

(1) 확정적 모형

수요와 조달기간이 일정하므로 EOQ모형과 정확히 일치

$$T^* = \sqrt{\frac{2 C_o}{D C_h}}$$
 ,  $M^* = Q^* + DL = \sqrt{\frac{2 C_o D}{C_h}} + DL$ 

(2) 확률적 모형 : 안전제고를 고려한 고정 기간 모형, 〈도표 17-7〉

$$T^* = \sqrt{\frac{2 C_o}{\overline{D} C_h}}$$
,  $M^* = \overline{d} \times (T^* + L) + z_a \sigma_d \sqrt{T^* + L}$ 

**(5) Quantity discount**: pp. 568-570, 〈도표 17-8〉

$$TC_j(Q) = C_jD + C_o\frac{D}{Q} + IC_j\frac{Q}{2}$$

Algorithm: p. 568

<6> ABC 재고관리 (pp.568-570)

1950, GE, Dickie, Control the vital few

(참고) Pareto's law: Major part of an activity is accomplished by minority

- (1) Criteria
  - .Annual dollar usage

(Annual dollar volume = annual usage  $\times$  unit purchase cost)

- .Scarcity of material
- .Storage requirement

(2) Classification of monetary value (Criteria에 의해 각 item 분류) Divide into 3 classes according to dollar volume

|                       | inventory items | dollar volume |
|-----------------------|-----------------|---------------|
| A: high value items   | 15~20 %         | 75~80 %       |
| B: medium value items | 20~25 %         | 10~15 %       |
| C : low value items   | 60~65 %         | 5~10 %        |

(3) Control based on the ABC classification (중요도 group별로 degree of control 결정)

### <7> 단일기간재고모형 (Single period inventory model) (pp.551-555)

MP = 한계이익(marginal profit), 즉 최종단위가 팔렸을 때 얻을 수 있는 이익
Cu (Cost per unit of demand underestimated)

ML = 한계손실(marginal loss), 즉 최종단위가 팔리지 않았을 때 발생하는 손실 Co (Cost per unit of demand overestimated)

$$p \ge \frac{ML}{MP + ML}$$
 인 최대 Q를 주문

여기서 P = 최종단위가 팔릴 확률

(예) 어느 대학생은 크리스마스시즌에 팔 크리스마스트리용 전나무를 주문하고자 함. 전나무 한 단위의 구입원가는 5,000원, 판가는 10,000원임. 시즌 중에 팔리지 않은 전나무 땔감으로 단위당 1,000원씩 받고 시장상인에게 넘김. 이 대학생은 지난 수년간 계속해서 크리스마스트리용 전나무를 팔았으므로 과거의 자료로부터 다음과 같은 수요의 확률분포를 얻었음. 얼마를 주문해야 할 것인가?

| 3 3 -S |                |
|--------|----------------|
| 수요량    | 확 <del>률</del> |
| 15     | 0.1            |
| 16     | 0.1            |
| 17     | 0.2            |
| 18     | 0.3            |
| 19     | 0.2            |
| 20     | 0.1            |

(예)신문팔이문제(p.551)

#### <8> Miscellaneous Systems

- 1 Optional replenishment system
- 2 Two-Bin System
- ③ One-Bin System

#### <9> Inventory Accuracy and Cycle Counting

- 1 Inventory accuracy refers to how well the inventory records agree with physical count
- 2 Cycle Counting is a physical inventory-taking technique in which inventory is counted on a frequent basis rather than once or twice a year