Chapter 1: Introduction

- Chapter 2: Basic components and electric circuits
- Chapter 3: Voltage and current laws
- Chapter 4: Basic Nodal and Mesh analysis
- Chapter 5: Handy circuit analysis techniques
- Chapter 6: The Operational Amplifier
- Chapter 7: Capacitors and Inductors
- Chapter 8: Basic RL and RC circuits
- Chapter 9: The RLC circuits
- Chapter10: Sinusoidal steady-state analysis
- Chapter11: AC circuit power analysis
- Chapter12: Polyphase circuits

Chapter 1 Introduction

TADU

Four main categories of circuit analysis

- (a) DC Analysis
- (b) Transient Analysis
- (c) Sinusoidal Analysis
- (d) Frequency Analysis

Linear circuit analysis ?

IADLE	to Exact Value						
x	f(x)*	1 + <i>x</i>	Relative error**				
0.0001	1.0001	1.0001	0.0000005%				
0.001	1.0010	1.001	0.00005%				
0.01	1.0101	1.01	0.005%				
0.1	1.1052	1.1	0.5%				
1.0	2.7183	2.0	26%				
*Quoted to four significant figures. **Relative error $\triangleq \left 100 \times \frac{e^x - (1+x)}{x} \right $							

arison of a Linear Model for a

Chapter 2 Basic Components and Electric Circuits

- 2.1 Units and Scales
- 2.2 Charge, Current, Voltage, and Power
- 2.3 Voltage and Current Sources
- 2.4 Ohm's Law
- Basic electrical quantities and associated units.
- Current direction and Voltage polarity
- The passive sign convention for calculation power
- Ideal voltage and current sources
- Dependent sources
- Resistance and Ohm's law

International System of Units

TABLE 2.1 SI Base Units

Base Quantity	Name	Symbol
length	meter	m
mass	kilogram	kg
time	second	S
electric current	ampere	А
thermodynamic temperature	kelvin	Κ
amount of substance	mole	mol
luminous intensity	candela	cd

- (a) Work or Energy : Joule (J), kWh
- (b) Power : Watt (W)
- (c) Calorie is another unit of energy

SI Prefixes

ABLE	2.2 SI Pi	refixes			
Factor	Name	Symbol	Factor	Name	Symbol
10^{-24}	yocto	У	10 ²⁴	yotta	Y
10^{-21}	zepto	Z	10^{21}	zetta	Z
10^{-18}	atto	а	10^{18}	exa	Е
10^{-15}	femto	f	10^{15}	peta	Р
10^{-12}	pico	р	10^{12}	tera	Т
10^{-9}	nano	n	10^{9}	giga	G
10^{-6}	micro	μ	10^{6}	mega	Μ
10^{-3}	milli	m	10 ³	kilo	k
10^{-2}	centi	с	10^{2}	hecto	h
10^{-1}	deci	d	10^{1}	deka	da

Charge

- Positive or negative charge
- Unit of charge ?
- Charge of an electron ?
- Charge in motion : Current

Current

- Transfer of charge : transfer of Energy
- Controlled transfer of charge : Key factor of Electrical Engineering
- Vector quantity : amount and direction
- Reference direction of current
- Definition of 1 A :

$$\int_{q(t_0)}^{q(t)} dq = \int_{t_0}^t i \, dt'$$
$$q(t) = \int_{t_0}^t i \, dt' + q(t_0)$$

7

2.2 Charge, current, voltage, and power

Voltage

- Potential difference bet. two terminal : Can move charges
- Expenditure of Energy
- Unit of Voltage ? Volt and J/C
- Polarity convention

Power

- 1 Watt (J/s): one joule of energy expenditure through transfer of one coulomb of charge in one second.
- Passive sign convention :

p = v i

The power absorbed by the element

Example 2.1

The power absorbed by each element ?

- Simple Lumped circuit element model :
- Circuit element can be classified according to the relationship of the current through the element to the voltage across the element
- Voltage is proportional to the current : Resistor
- Voltage is proportional to the derivative of the current with respect to time : Inductor
- Voltage is proportional to the integral of the current with respect to time : Capacitor
- Voltage/current source is completely independent of the current/voltage through/across it : Independent voltage/current sources
- Voltage or current sources that depends upon a current or voltage elsewhere in the circuit : Dependent sources

Independent voltage sources

- A terminal voltage which is completely independent of the current through it
- Ideal sources are assumed

Independent voltage sources

- A terminal current which is completely independent of the voltage across it
- What voltage across an independent current source ?

Dependent (controlled) sources

- Useful for modeling some electronic elements
- (a) current-controlled current source
- (b) voltage-controlled current source
- (c) voltage-controlled voltage source
- (d) current-controlled voltage source
- Unit of K, g, and r ?

Networks and Circuits

- (electrical) Network : interconnection of two or more circuit elements
- (electric) Circuit : A network with at least one closed path

Resistance

- Idealized passive elements: resistor, inductor, capacitor
- Ohm's law : voltage across conducting material is directly proportional to the current through the material

v = Ri

- Proportionality factor R : Resistance
- Unit of resistance : ohm (Ω) = V/A
- Linear resistor : constant within certain range of current and voltage or power
- Nonlinear resistor : active element such as diode, transistor
- The absorbed power :

$$p = \upsilon i = i^2 R = \upsilon^2 / R$$

Resistivity

Conductance

- Reciprocal of Resistance

$$G = \frac{i}{\upsilon} = \frac{1}{R}$$

- Unit of conductance : siemens (S) = mho = A/V
- Instantaneous voltage, current, and power
- Short or open circuit for zero or infinite resistance

Homework : 2장 Exercises 4의 배수 문제 (48번까지만)

- Due day : 2장 수업 끝나고 일주일 후 수업시작 전까지 제출.

이 자료에 나오는 모든 그림은 McGraw·hill 출판사로부터 제공받은 그림을 사 용하였음.

All figures at this slide file are provided from The McGraw-hill company.