경제수학제7장

고급 미분법

Chain Rule

- If y = f(u) where u = g(x)
- $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$
- *Chain rule*: multiply the derivative of the outer function by the derivative of the inner function

Ex) Find dy / dx when $y = u^5$ and $u = 1 - x^3$.

Ex) Find
$$dy/dx$$
 when $y = \frac{10}{(x^2 + 4x + 5)^7}$. (Hint: If $u = x^2 + 4x + 5$, then $y = 10u^{-7}$)

Ex) Find
$$dy / dx$$
 when $y = \left(\frac{x-1}{x+3}\right)^{1/3}$
Ex) Find dy / dx when $y = \sqrt{x^2 + 1}$

Product Rule

- If y = f(x)g(x)
- u = f(x), v = g(x)

•
$$\frac{dy}{dx} = v. \frac{du}{dx} + u. \frac{dv}{dx}$$

• *Product rule*: the derivative of the first term times the second plus the derivative of the second term times the first

Ex) Compute
$$\frac{d}{dx} \left(3x^8 + \frac{x^{100}}{100} \right)$$

Ex) Find $h'(x)$ when $h(x) = (x^3 - x)(5x^4 + x^2)$

Quotient rule

- If y = f(x)/g(x)
- u = f(x), v = g(x)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v \cdot \frac{\mathrm{d}u}{\mathrm{d}x} - u \cdot \frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$$

• *Quotient rule*: the derivative of the first term times the second minus the derivative of the second term times the first, all divided by the square of the second term

Ex) Compute F'(x) and F'(4) when $F(x) = \frac{3x-5}{x-2}$

Ex) Let C(x) be the total cost of producing x units of a commodity. Then C(x)/x s the average cost of

producing x units. Find an expression for $\frac{d}{dx} [C(x)/x]$.

Problems)

1. Find the derivative of the following:

(a)
$$y = \frac{3}{5}x^2 - 2x^7 + \frac{1}{8} - \sqrt{x}$$
 (b) $y = \left(x^5 + \frac{1}{x}\right)(x^5 + 1)$ (c) $y = x^{-1}(x^2 + 1)\sqrt{x}$ (d) $y = \frac{(x+1)(x-1)}{(x^2+2)(x+3)}$
(e) $y = \frac{1}{2} + \frac{1}{3}\left(\frac{x-1}{x+1}\right)(1+x^{-2})$

2. If D(P) denotes the demand for a product when the price per unit is P, then the revenue function R(P) is given by R(P) = PD(P). Find an expression for R'(P).

Marginal Revenue, Price Elasticity and Maximum Total Revenue

• For any demand curve, given that *E* is point price elasticity of demand and is negative

$$MR = P\left(1 + \frac{1}{E}\right)$$

and maximum total revenue occurs when E = -1

Optimal Production and Cost Relationships

- Maximum output occurs where dQ/dL = 0
- A firm operating in perfectly competitive product and labor markets:
 - has short-run marginal cost curve MC = W/MPL where MPL is the marginal product of labor and W is the wage rate
 - ≻to maximize profits, it employs labor until MVP = W
 - where P is the price of its product and
 - MVP = *P*.MPL is the marginal value product of labor

Marginal and average cost

- MC is below AC before a minimum turning point of AC
- At the turning point of AC, MC intersects AC from below

Exponential Functions

- For the exponential function $y = e^x$
- $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x$
- More generally we can write the rule as shown below:
- For the exponential function $y = ae^{mx}$
- $\frac{dy}{dx} = mae^{mx}$

Ex) Find the derivative of the following:

(a)
$$y = e^{-x}$$
 (b) $y = x^{p} e^{ax}$ (c) $y = \sqrt{e^{2x} + x}$ (d) $y = \frac{e^{x}}{x}$ (e) $y = x^{4} e^{-2x}$ (f) $y = x e^{-\sqrt{x}}$

Natural Logarithmic Functions 1

• If $y = \log_e x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-1}$$

Ex) Compute y' of the following: (a) $y = x^3 + \ln x$ (b) $y = x^2 \ln x$ (c) $y = \ln x / x$

Natural Logarithmic Functions 2

• More generally: if $y = \log_e mx$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x} = x^{-1}$$

• and if
$$y = \log_{e} ax^{m}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{m}}{x}$$

Ex) Compute y' of the following:

(a)
$$y = \ln(1-x)$$
 (b) $y = \ln(4-x^2)$ (c) $y = \ln\left(\frac{x-1}{x+1}\right) - \frac{1}{4}x$