## Chapter 16 Integration and hormonal regulation of metabolism

- \* Hormones: diverse structure for diverse function
- \* Tissue-specific Metabolism : The Diversion of labor(대사의 분담)
  - Small intestine, liver, muscle, adipose tissue, brain, kidney
- \* Hormonal regulation of fuel metabolism
- \* Obesity and the regulation of body mass
  - Feeding-Fasting cycle (섭식-단식 주기)

### 1. Hormones: Diverse structures for diverse function

- \* 실질적으로 복잡한 생명체의 모든 과정은 호르몬에 의하여 조절된다.
  - 혈압, 혈액의 양, 전해질균형유지, 성의 분화, 소화 등
- \* 포유동물의 각 기관의 대사는 신경내분비계(neuroendocrine system)에 의하여 통합 조절된다.



Fig. 신경내분비계의 신호전달

Fig. 호르몬 작용의 일반적인 두 가지 기전

### 1) 호르몬의 발견과 정제는 Bioassay(생물학적 분석)가 요구된다.

- 방사선 면역 측정법(Radioimmunoassay, RIA) : 호르몬에 특이적인 항체를 이용하여 측정하는 방법으로 ELISA(효소면역측정법, enzyme-linked immunosorbent assay) 측정법으로 발전

### 2) Hormones은 특이적이고 친화력이 높은 세포 수용체를 통하여 작용한다.

### 3) 호르몬은 화학적으로 다양하다.

\* Endocrine : 혈액으로 분비되어 세포를 돌아다니며 표적세포에 도달한다.

\* Paracrine :세포 밖의 공간으로 분비되어 이웃 표적세포에 확산된다.

\* Autocrine: 같은 세포표면의 수용체에 결합하여 작용한다.

#### TABLE 23-1 Classes of Hormones

| Туре          | Example                            | Synthetic path                       | Mode of action                                                     |  |
|---------------|------------------------------------|--------------------------------------|--------------------------------------------------------------------|--|
| Peptide       | Insulin, glucagon                  | Proteolytic processing of prohormone |                                                                    |  |
| Catecholamine | Epinephrine                        | From tyrosine                        | Plasma membrane receptors; second messenge                         |  |
| Eicosanoid    | PGE <sub>1</sub>                   | From arachidonate                    |                                                                    |  |
|               | •                                  | (20:4 fatty acid)                    |                                                                    |  |
| Steroid       | Testosterone                       | From cholesterol                     |                                                                    |  |
| Vitamin D     | 1,25-Dihydroxycholecalciferol      | From cholesterol                     | Nuclear receptors; transcriptional regulation                      |  |
| Retinoid      | Retinoic acid                      | From vitamin A                       |                                                                    |  |
| Thyroid       | Triiodothyronine (T <sub>3</sub> ) | From Tyr in thyroglobulin            |                                                                    |  |
| Nitric oxide  | Nitric oxide                       | From arginine $+$ $0_2$              | Cytosolic receptor (guanylate cyclase) and second messenger (cGMP) |  |

- ① Thyroid hormones(갑상선호르몬): thyroxine, triiodothyronine
  - 갑상선호르몬은 **시상하부가 thyrotropin 방출호르몬을 분비**할 때 분비된다.
  - Thyrotropin : 갑상선 자극 hormone
- ② Steroid hormones:
  - aderenocotical hormones, sex hormones, vitD derived hormone
- \* These hormones are lipid soluble and rapidly pass through plasma membranes into the cytosol of target cells
- \* Most steroid hormone receptors are localized in the nucleus
- 3 Amine hormones:
  - water soluble hormones (epinephrine norepinephrine, dopa, dopamine)
- ④ **Peptides hormones**: 췌장호르몬(Insulin, glucagon, somatostatin), 부갑상샘호르몬, 칼시토닌, 시상하부, 뇌하수체호르몬
  - \* The pancreas has two major biochemical functions:

1st: produce digestive enzymes for secretion into the intestine 2nd: produce and secrete peptides hormones

\* Somatostatin inhibits the secretion of insulin and glucagon

# Insulin



4) 호르몬의 분비는 신경 및 호르몬 신호의 단계에 의하여 조절된다.



Fig. 주요내분비선

Fig. 중추신경계의 자극 후시상하부의 호르몬 분비 연쇄증폭



Fig. 주요내분비계와 그 표적 조직

- 2. Tissue-specific Metabolism (조직특이대사): The Diversion of labor
- \* Each tissue and organ of the human body has a specialized function



### 1) Liver processes and distribute nutrients

- ◎ **Sugar**: Glucose는 간으로 들어가서 hexokinase에 의하여 인산화 되어 glucose-6- phosphate를 생성한다.
  - ① Glucose-6-phosphate → Glucose, Glycogen
  - ② Glucose-6-phosphate → Glycolysis → citrate cycle
  - ③ Glucose-6-phosphate → **precursor for synthesis lipid**
  - ④ Glucose-6-phosphate → substrate for the pentose phosphate pathways

### Clipids

- The fatty acid components of the lipids entering hepatocytes also have several different pathways
- ① Fatty acids are converted into liver lipids
- 2) Fatty acids are the major oxidative fuel in the liver

### FFA may be activated and oxidized to yield acetyl- CoA and NADH.

- \* The acetyl-CoA is further oxidized via the citric acid cycle to yield ATP by oxidative phosphorylation
- ③ Excess acetyl-CoA released on oxidation of fatty acids and not required by the liver is converted into the <u>ketone bodies</u>, acetoacetate andβ-hydroxybutyrate, which are circulated in the blood to peripheral tissue, to be used as fuel for citric acid cycle.
- \* The ketone bodies may be regarded as a transport form of acetyl groups. They can supply a significant fraction of the energy in some peripheral tissues up to one-third in the heart, and 60 to 70% in the brain during prolonged fasting
- ④ Some of the acetyl-CoA derived from fatty acids (and from glucose) is used for the biosynthesis of cholesterol, which is required for membrane biosynthesis.
- \* Cholesterol is also the precursors of all steroid hormones and of the bile salts, which are essential for the digestion and absorption of lipid.
- ⑤ Fatty acids are converted to the phospholipids and triacylglycerols of the plasma lipoproteins, which carry lipids to adipose(fat) tissue for storage as triacylglycerol
- ⑤ Some free fatty acids become bound to serum albumin and are carried in the blood to the heart and skeletal muscles, which absorb and oxidize free fatty acids as a major fuel.
- \* Serum albumin is the most abundant plasma protein; one molecule of serum albumin carry up to 10 molecules of free fatty acid releasing them at the consuming tissue where they are take up by passive diffusion.
- \* Cholesterol and cholesteryl esters are transported as lipoproteins



Fig. 간에서의 지방산 대사

Fig. 간에서 GIC-6-P의 대사 경로

### Amino acids :

#### - 간으로 들어간 아미노산은 중요한 몇 가지 대사과정에 관여한다.

- ① act as precursors for protein synthesis in hepatocytes
- 2 used as precursors in the synthesis of tissue proteins
- ③ are precursors in the biosynthesis of nucleotides, hormone, and other nitrogenous compounds
- ④ deaminated and degraded to yield acetyl-CoA and TCA cycle intermediates (amino acids not needed for biosynthesis of protein)
- <u>Citrate cycle intermediates</u> may be converted into glucose and glycogen via the gluconeogenic pathway
- Acetyl-CoA may be oxidized via the citric acid cycle for ATP energy
- Acetyl-CoA may be converted into lipids for storage
- Ammonia is converted by hepatocytes into the excretory product, urea
- ⑤ There is degradation of muscle protein to amino acid (fasting)
- These amino acid donate their amino groups to pyruvate (transamination), to yield alanine, which is transported to the liver and deaminated
- The liver is also active enzymatic detoxification of foreign organic compound, such as drugs, food additives, preservatives, and other possibly harmful agents with no food value.



Fig. 간에서의 아미노산 대사

## 2) Adipose tissue stores and supplies fatty acids

- \* Adipose tissue: consists of adipocytes (fat cells), 총질량의 15% 차지
- distributed under the skin, around deep blood vessels, in the abdominal cavity
- 지방산의 합성은 hepatocytes에서 주로 일어난다(triacylglycerol: 65%).
- have an active glycolytic metabolism
- use the citric acid cycle to oxidized pyruvate and fatty acid
- \* Epinephrine은 Adipocytes의 fatty acid 분해를 촉진한다.
- \* Insulin은 triacylglycerol lipase의 활성을 저해한다.
- \* Brown fat generate heat rather than ATP during the oxidation of fatty acid

#### 3) Muscle uses ATP for mechanical work

- \* Skeletal muscle:
  - Active muscular work : 산소의 90% 소비
  - Resting human : 산소의 50% 소비
- \* Metabolism in skeletal muscle : 주로 ATP 생산
- \* Skeletal muscle: can use free fatty acids, ketone bodies, or glucose as fuel

### \* 근육활동 정도에 따라

- ① In resting muscle the primary fuels are free fatty acids from adipose tissue and ketone bodies from the liver.
- 2 Moderately active muscle use blood glucose in addition fatty acids and ketone bodies
- 3 Maximally active muscle:
- ATP 요구가 너무 커서 혈류는 호기적 호흡만으로 필요한 에너지를 생산하기에 충분한 산소와 연료를 제공할 수 없다.
- Under these conditions, 근육 glycogen은 발효에 의해 lactate로 분해되면서 glucose 한분자당 2몰의 ATP 생산한다.
- 젖산발효는 신속히 여분의 ATP를 제공한다.
- Epinephrine은 glycogen을 분해하여 glucose 생성을 촉진한다.
- \* **Skeletal muscle** does not contain glucose-6-phosphatase and cannot convert glucose-6-phosphate to free glucose for export to other tissues
- \* Much of the O<sub>2</sub> is used for the production of ATP by oxidative phosphorylation in the liver
- \* **Skeletal muscle** contain considerable amounts of phosphocreatine, which can rapidly regenerate ATP from ADP by the creatine kinase reaction
- \* Heart muscle has a completely aerobic metabolism at all times
  - Fuel: glucose, fatty acid, ketone bodies
  - energy are stored in the form of phosphocreatine



Fig. 근육수축의 에너지원



Fig. 골격근과 간의 대사활동

\* 격심한 활동과 완만한 활동 및 휴식시의 ATP 합성에 사용되는 연료는 서로 다르다. ATP는 인산 크레아틴으로부터 신속하게 얻을 수 있다

### 4) The brain uses energy for transmission of impulses

- ① The brain of adult humans normally uses only glucose as fuel
- ② The brain has a very active respiratory metabolism(산소의 20% 소비)
- ③ The brain 직접 fatty acid or lipid를 이용할 수 없지만 glucose 가 고갈되면 간 에서 형성된 ketone body 즉 β-hydroxybutyrate를 에너지원으로 사용할 수 있다.

### 5) Blood carries oxygen, metabolites, and hormones

- \* The average adult human has 5 to 6 L of blood
- \* Almost half of this volume is occupied by three types of blood cells
- ① Erythrocytes (red cells) : O<sub>2</sub>, CO<sub>2</sub> Carry
- 2 Leukocytes (white cells): immune system
- ③ platelets blood clotting :혈액응고
- \* Blood plasma (혈장): liquid portion of blood
- \* Plasma protein: immunoglobulin(circulating antibodies), serum albumin, apolipoprotein, transferrin fibrinogen, prothrombin
- \* The concentration of glucose dissolved in the plasma is also subject to tight regulation.

## 3. Hormonal regulation of fuel metabolism

1) 췌장은 혈당의 변화에 대응해서 insulin이나 글루카곤을 분비한다.



Fig. 췌장의 내분비계

Fig. 췌장  $\beta$ 세포에 의한 인슐린분비의 Glucose 조절

# 2) 인슐린은 고혈당을 글루카곤은 저혈당을 조절한다.



Fig. 포식상태, 지방생성 상태의 간

TABLE 23–3 Effects of Insulin on Blood Glucose: Uptake of Glucose by Cells and Storage as Triacylglycerols and Glycogen

| Target enzyme                        |
|--------------------------------------|
| ↑ Glucose transporter (GLUT4)        |
| ↑ Glucokinase (increased expression) |
| ↑ Glycogen synthase                  |
| ↓ Glycogen phosphorylase             |
| ↑ PFK-1 (by ↑ PFK-2)                 |
| ↑ Pyruvate dehydrogenase complex     |
| Acetyl-CoA carboxylase               |
| ↑ Lipoprotein lipase                 |
|                                      |



Fig. 공복상태의 간, Glucose 생성 상태의 간

TABLE 23-4 Effects of Glucagon on Blood Glucose: Production and Release of Glucose by the Liver

| Metabolic effect                                          | Effect on glucose metabolism                                  | Target enzyme                                              |  |
|-----------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|--|
| ↑ Glycogen breakdown (liver) ↓ Glycogen synthesis (liver) | Glycogen —→ glucose<br>Less glucose stored as glycogen        | ↑ Glycogen phosphorylase<br>↓ Glycogen synthase<br>↓ PFK-1 |  |
| ↓ Glycolysis (liver)                                      | Less glucose used as fuel in liver                            |                                                            |  |
| ↑ Gluconeogenesis (liver)                                 | Amino acids $\left. igg  \longrightarrow glucose \right.$     | ↑ FBPase-2<br>↓ Pyruvate kinase                            |  |
|                                                           | Oxaloacetate J                                                | ↑ PEP carboxykinase                                        |  |
| ↑ Fatty acid mobilization (adipose tissue)                | Less glucose used as fuel by liver, muscle                    | ↑ Triacylglycerol lipase<br>Perilipin phosphorylation      |  |
| 1 Ketogenesis                                             | Provides alternative to glucose as<br>energy source for brain | ↑ Acetyl-CoA carboxylase                                   |  |

### 3) During starvation, metabolism shifts to provide fuel for the brain

(공복과 기아시의 대사는 뇌의 연료를 공급하도록 변한다)

TABLE 23-5 Available Metabolic Fuels in a Normal-Weight 70 kg Man and in an Obese 140 kg Man at the Beginning of a Fast

| Type of fuel                                                     | Weight (kg) | Caloric equivalent<br>(thousands of kcal (kJ)) | Estimated survival $(months)^*$ |
|------------------------------------------------------------------|-------------|------------------------------------------------|---------------------------------|
| Normal-weight, 70 kg man                                         |             |                                                |                                 |
| Triacylglycerols (adipose tissue)                                | 15          | 141 (589)                                      |                                 |
| Proteins (mainly muscle)                                         | 6           | 24 (100)                                       |                                 |
| Glycogen (muscle, liver)                                         | 0.225       | 0.90 (3.8)                                     |                                 |
| Circulating fuels (glucose, fatty acids, triacylglycerols, etc.) | 0.023       | 0.10 (0.42)                                    |                                 |
| Total                                                            |             | 166 (694)                                      | 3                               |
| Obese, 140 kg man                                                |             |                                                |                                 |
| Triacylglycerols (adipose tissue)                                | 80          | 752 (3,140)                                    |                                 |
| Proteins (mainly muscle)                                         | 8           | 32 (134)                                       |                                 |
| Glycogen (muscle, liver)                                         | 0.23        | 0.92 (3.8)                                     |                                 |
| Circulating fuels                                                | 0.025       | 0.11 (0.46)                                    |                                 |
| Total                                                            |             | 785 (3,280)                                    | 14                              |

<sup>\*</sup>Survival time is calculated on the assumption of a basal energy expenditure of 1,800 kcal/day.



Fig. 오래 지속된 공복상태나 조절되지 않은 당뇨병의 경우 간의 에너지대사

### 4) 에피네피린은 급박한 상황에 대한 행동신호이다

- 분비 : 활발한 활동이 요구되는 스트레스 상태
- 뇌의 신호가 신경을 통해서 부신피질에서 분비(epinephrine, norepinephrine)
- 역할 : 심막과 혈압을 높여 산소와 연료가 조직으로 유입되는 속도를 증가시킨다

TABLE 23-6 Physiological and Metabolic Effects of Epinephrine: Preparation for Action

| Immediate effect                          |     | Overall effect                                          |
|-------------------------------------------|-----|---------------------------------------------------------|
| Physiological                             |     |                                                         |
| ↑ Heart rate                              | 1   |                                                         |
| ↑ Blood pressure                          | }   | Increase delivery of O <sub>2</sub> to tissues (muscle) |
| ↑ Dilation of respiratory passages        |     | 2                                                       |
| Metabolic                                 | ,   |                                                         |
| ↑ Glycogen breakdown (muscle, liver)      | ]   |                                                         |
| ↓ Glycogen synthesis (muscle, liver)      | · · | Increase production of glucose for fuel                 |
| ↑ Gluconeogenesis (liver)                 |     | ,                                                       |
| ↑ Glycolysis (muscle)                     | ,   | Increases ATP production in muscle                      |
| ↑ Fatty acid mobilization (adipose tissue | e)  | Increases availability of fatty acids as fuel           |
| ↑ Glucagon secretion                      | ĺ   | , ,                                                     |
| ↓ Insulin secretion                       | }   | Reinforce metabolic effects of epinephrine              |

### 5) Cortisol은 저혈당을 포함하는 스트레스 신호다

- 여러 가지 스트레스(**불안, 공포, 통증, 출혈, 감염, 기아** 등)는 부신수질로부터 코르티코스테로이드 호르몬인 코티졸의 분비를 촉진한다.
- 코티졸은 중성지방으로부터 지방산의 유리를 자극하며 근육, 간, 지방조직 등에 작용한다.
- 간에서 코티졸은 PEPcarboxylase의 활성을 자극하여 **glucose합성을 촉진**한다.

#### 6) 당뇨병은 인슐린의 생성 또는 작용의 결합으로 발생한다

- \* 제 1형 당뇨(IDDM) : 인슐린 의존형 당뇨
- \* 제 2형 당뇨(NIDDM) : 인슐린 비의존형 당뇨
- \* 당뇨병 증상: 다음 증(polydipsia), 다갈 증, 다뇨증(polyuria)
- \* 당뇨(glucosuria) : 뇨중에 다량의 당이 배설
- \* 당뇨병의 특성 : 혈액으로부터 글루코스를 흡수하지 못함
  - 간에서 지방산의 불완전산화가 과도하게 일어나는 것이다
  - acetyl-CoA가 축적 되어 **케톤체**가 생성 되고 과잉의 케톤체가 뇨중으로 배설되는 증상을 케톤증이라 하며 계속 진행되면 혈액의 pH가 산성으로 되어 **ketoacidosis[케토산증]**를 유발한다.

#### \* 당뇨병 진단 : Glucose tolerance test; 당부하검사)

- 공복시 100g의 glucose를 섭취시킨 후 섭취 전 후의 혈당량을 측정하는 방법

## 4. Obesity and the regulation of body mass

- 비만은 체질량지수(BMI)로 정의
- 1) **지방억제 이론(lipostat theory)**은 지방조직의 feedback 조절을 예측한다.
- \* 지방억제 이론(lipostat theory) : 체중이 정해진 값을 초과하면 먹는 행동을 억제하고 소비를 증가시킨다는 기전을 가정함
- \* **렙틴(leptin)** : 지방세포에서 생성되며, 혈액을 통하여 이동하여 뇌의 시상하부수용체에 작용하여 **식욕을 감소시키는 단백질**(167개의 아미노산)
  - 교감신경을 자극하여 혈압, 심장 박동수, 열 생산 증가시킨다.
- \* 렙틴유전자 2개가 결손(ob/ob):
  - 비정상 적으로 성장, 번식할 수 없으며 식욕을 억제할 수 없다
  - 인슐린 저항성을 나타내며, 렙틴을 주입하면 체중감소, 운동성과 열 생산이 증가
- \* 렙틴 수용체 : 식이 행동을 조절하는 뇌 부위에서 주로 발현된다



Fig. 식품 섭취와 에너지 소비에 대한 시상하부의 조절 a) 시상하부의 해부도. (b) 시상하부와 지방세포사이의 상호작용

### 2) Leptin은 식욕억제(anorexigenix) peptide 호르몬의 생산을 촉진한다

- 궁상핵(arcuate nucleus)에서 두 종류의 신경세포가 식품 섭취와 대사를 조절.

#### ◎ 식욕증진 신경세포

- 신경펩타이드 Y(neuropeptide Y. NPY)의 생산과 분비를 자극
- 신경전달회로의 다음단계의 신경세포가 먹어라는 신호를 뇌에 전달하도록 한다
- \* 기아시 NPY의 혈액농도는 증가하며, ob/ob, db/db 쥐에서도 증가한다.

#### ○ 식욕억제 신경세포

- α-멜라닌 세포 자극호르몬(α-melanocyte-stimulating hormone, α-MSH) 생산
- α-MSH 분비에 의하여 다음단계의 신경세포가 그만 먹어라는 신호를 뇌에 전달
- \* 지방조직에서 분비되는 렙틴의 양은 지방세포의 크기와 수에 관련이 있다.
- \* 지방조직의 양이 감소하면 혈액의 렙틴양이 감소하고, NPY 생산이 감소
- \* CAMP에 의한 신호전달이 감소하면 짝풀림이 감소하고 열생산이 감소 에너지를 저장, 지방이 이동이 느려진다

### [식이조절호르몬]



- \* 렙틴은 유전자 발현을 조절하는 신호전달 연쇄증폭을 유발한다.
- \* 렙틴시스템은 진화되어 기아 반응을 조절하는 것 같다
  - 렙틴은 에너지 대사를 조절하는 AMP의존 단백질 kinase를 활성화시킨다
- \* 인슐린은 궁상핵에 작용하여 식이와 에너지 보존을 조절한다

### 3) 아디포넥틴(Adiponectin)은 AMPK를 통하여 작용한다

- 224개의 아미노산으로 된 peptide 호르몬으로 거의 지방조직에서 생산
- 간이나 근육에서 지방산 및 탄수화물의 대사에 강력한 영향을 준다
- 혈액으로부터 근육세포로 지방산의 유입을 증가시키고 근육에서 지방산이 산화되는 비율을 증가시킨다.
- 간세포에서 지방산과 glucose 합성을 저해하고 근육과 간으로의 당 유입과 동화작용을 자극한다.
- \* AMPK(AMP-dependent protein kinase)

### [근육과 지방조직의 아디포넥틴의 효과]



**↑Fatty acid uptake ↑Glycolysis** 

 $\uparrow oldsymbol{eta}$  Oxidation  $\downarrow$  Gluconeogenesis

**†Glucose uptake** ↓ Fatty acid synthesis



Fig. Acetyl-CoA carboxylase에 대한 AMPK의 작용으로 일어나는 지방산합성과 β-산화의 조절