Chapter 9. The citrate cycle

- * TCA cycle (Krebs cycle, Citrate cycle)의 기능
 - Energy production (에너지 생산)
 - Cycle intermediates are substrates in a variety of biosynthetic reaction
- * Cellular respiration [세포호흡] : 연료가 연소되어 CO₂ 와 물로 전환되면서 ATP를 생산하는 것 (2 steps 으로 구성)

Fig. Catabolism of proteins, fats, and carbohydrates occurs in the three stages of cellular respiration.

- Stage 1: Oxidation of fatty acids, glucose, and some amino acids
- Stage 2: Oxidation of acetyl groups via the citric acid cycle includes four steps in which electrons are abstracted
- Stage 3: Electrons carried by NADH and FADH₂ are funneled in to a chain of mitochondrial electron carriers—the respiratory chain–ultimately reducing O₂ to H₂O.
- * This electron flow drives the synthesis of ATP in the process of oxidative phosphorylation.

I. Citric acid cycle(구연산회로)

◎ 학습목표

- 왜 피르브산 탈수소효소 복합체가 대사의 중요한 연결부위를 촉매 하는가?
- 어떻게 pyruvate dehydrogenase complex가 조절되는가?
- 시트르산회로에서 아세틸 CoA 산화의 장점은 무엇인가?
- Citrate cycle이 어떻게 조절되는가?

◎ Citrate회로의 기능

- 탄소 연료로부터 높은 에너지전자(high-energy electron)를 생성한다.
- 세포물질대사의 중심으로 모든 연료분자들의 호기성물질대사의 관문이다.
- 아미노산, 핵산, 포리피린(헴)과 같은 다른 분자들의 생합성 전구체이다.
- 이 회로의 구성성분인 OAA는 glucose 합성의 전구체이다.

1. Pyruvate is oxidized to acetyl CoA and CO2

- 이 반응은 대사의 결정적인 반응으로 탄수화물에 있는 탄소원자가 시트르산 회로를 통하여 산화되거나 지방의 합성에 이용되도록 한다.

- * The overall reaction (전체반응)
- Pyruvate + NAD⁺ + CoASH \rightarrow Acetyl-CoA + NADH + CO₂ + H₂O + H⁺
- catalyzed by the pyruvate dehydrogenase complex
- oxidative decarboxylation, an irreversible oxidation process

1) Pyruvate dehydrogenase complex requires five coenzyme

- ① NAD, FAD: electron carriers
- 2) TPP: decarboxylation, coenzyme
- ③ Pantothenate : an essential component of coenzyme A
- 4 Lipoate: has two thiol groups,

can serve both as electron carrier and as an acyl carrier

2) Pyruvate dehydrogenase complex consists of three distinct enzymes

Table 15-1 Subunit composition of the E. coli pyruvate dehydrogenase complex					
Enzyme	Coenzyme(s)	Molecular weight of subunit	Number of subunits per complex		
Pyruvate dehydrogenase (E ₁)	ТРР	96,000	24		
Dihydrolipoyl transacetylase (E ₂)	Lipoate, CoA	65,000-70,000	24		

Source: Modified from Eley, M.H., Namihira, G., Hamilton, L., Munk, P., & Reed, L.J. (1972) α -Ketoacid dehydrogenases. XVIII: subunit composition of the $E.\ coli$ pyruvate dehydrogenase complex. Arch. Biochem. Biophys. 152, 655–669.

56,000

FAD, NAD

12

2. Reaction of citric acid cycle

Dihydrolipoyl

dehydrogenase (E₃)

- o begins with the condensation of acetyl-CoA with OAA to form citrate
- The citric acid cycle has eight steps
- o Amphibolic pathways can function in both anabolic and catabolic processes

1) Energy vielding in citrate cycle

Total ATP		12.5 ATP (15 ATP)	
6 Succinyl CoA	\rightarrow	Succinate	1 GTP
⑤ Succinate	\rightarrow	Fumarate	1 FADH2
④ Malate	\rightarrow	Oxaloactate	''
③ a-KGA	\rightarrow	Succinyl CoA	"
② Isocitrate	\rightarrow	α-ketoglutarate	"
① PVA	\rightarrow	Acetyl CoA	1 NADH

2) Citric acid cycle components are important biosynthetic intermediates (시트르산 희로의 구성성분은 중요한 생합성 중간체이다)

Fig. 동화작용에서 ctrate 회로의 역할

- 시트르산회로의 중간체는 많은 생합성경로의 중간체로 빠져나가면 음영을 한 부분에 있는 생성물을 만들게 된다.
- 적색으로 표시된 것은 시트르산회로의 고갈된 중간체를 보급하는 4종류 의 보충대사반응이다

3) Anaplerotic reaction (보충대사반응)

구연산회로의 중간산물이 생합성 전구체로서 작용하기위해 고갈되면 중간 산물들은 보충대사반응에 의하여 보충된다.

TABLE 16-2 Anaplerotic Reactions

Reaction	Tissue(s)/organism(s)
$\begin{array}{c} \text{Pyruvate} \ + \ \text{HCO}_3^- \ + \ \text{ATP} & \xrightarrow{\text{pyruvate carboxylase}} \\ \text{Oxaloacetate} \ + \ \text{ADP} \ + \ \text{P}_i \\ \text{Phosphoenolpyruvate} \ + \ \text{CO}_2 \ + \ \text{GDP} & \xrightarrow{\text{PEP carboxykinase}} \\ \text{Oxaloacetate} \ + \ \text{GTP} \\ \text{Phosphoenolpyruvate} \ + \ \text{HCO}_3^- & \xrightarrow{\text{malic enzyme}} \\ \text{Oxaloacetate} \ + \ \text{P}_i \\ \text{Pyruvate} \ + \ \text{HCO}_3^- \ + \ \text{NAD(P)H} & \xrightarrow{\text{malic enzyme}} \\ \text{malate} \ + \ \text{NAD(P)}^+ \end{array}$	Liver, kidney Heart, skeletal muscle Higher plants, yeast, bacteria Widely distributed in eukaryotes and prokaryotes
	and prondition

* Biotin carries CO2 group

4) Regulation of the TCA cycle (TCA 회로의 조절)

- · substrate availability [기질 이용능력]
- · inhibition by accumulating product (생성물의 축적에 의한 억제)
- · allosteric feedback inhibition of early enzyme by later intermediates

Fig. Regulation of metabolic flow from pyruvate through the citric acid cycle.

1) Three enzymes of the citric acid cycle are regulated

- * Citrate synthase: ADP에 의해 활성화, ATP, NADH는 경쟁적으로 저해
- * Isocitrate dehydrogenase : ADP, Ca⁺⁺에 의해 활성화, ATP에 의해 저해
- * a-ketoglutarate dehydrogenase : Succinyl CoA, NADH에 의해 저해

- 2 Two enzymes outside the citric acid cycle profoundly affect its regulation
 - * Pyruvate dehydrogenase : PVA → Acetyl CoA
 - inhibited by ATP, acetyl CoA, NADH
 - activated by AMP, **pyruvate**, CoA, NAD⁺, Ca⁺⁺
 - 입체다른자리 조절과 공유결합기전에 의하여 조절된다.
- © Pyruvate dehydrogenase (PDH) complex 조절
 - PDH 복합체는 [ATP/ADP], [NADH/NAD+], [Acetyl-CoA/CoA] 비가 높을 때 **입체다른자리 기전**으로 억제된다
 - **공유결합기전**은 인산화 및 탈인산화에 의한 조절된다
- * Pyruvate carboxylase : PVA ----- oxaloacetic acid

II. The Glyoxylate cycle (글리옥실산회로)

- * Glyoxylate cycle bypasses the two decarboxylation steps of the citric acid cycle
- * Two molecules of the acetyl-CoA enter the glyoxylate cycle
- * The glyoxylate cycle consists of five reactions
- * In Plants, the glyoxylate cycle occurs in organelles called glyoxysomes
- * High plant & m/o : 존재, Animal : nothing
- * 특히 고등식물종자의 발아 중 lipid가 탄수화물로 전환되는 기작

Fig. Glyoxylate cycle.

- The key enzymes (isocitrate lyase and malate synthase) are unique to the glyoxylate cycle
- The citric acid cycle and glyoxylate cycles are coordinately regulated (시트르산 회로와 글리옥실산 회로는 협조적으로 조절된다)
- Glyoxylate 회로를 가지고 있는 생물은 두 탄소를 가진 분자(acetyl-CoA)를 이용하여 살 수 있다.
- ☞ 글리옥실산회로는 아세트산으로부터 4-탄소화합물을 생성한다.
- $rac{1}{2}$ Glyoxylate cycle function : lipid ightharpoonup carbohydrate

Fig. Relationship between the glyoxylate and citric acid cycles. (글라이옥실산회로와시트르산회로사이의관계)

Fig. Coordinated regulation of glyoxylate and citric acid cycle (글라이 옥실산 회로와 시트르산회로의 협조적 조절)

- Isocitrate dehydrogenase가 두 회로의 분배를 결정한다