Chapter 6 GRAPHS

6.1 The graph abstract data type

6.1.1 Introduction

· the konigsberg bridge problem

· to determine whether, starting at one land area(node), it is possible to walk across all the bridges(arc) exactly once in returning to the starting land area

[image: image1.png]Figure 6.1: (1) Scction of the river Pregel in Konig:

berg; (b) Fuler's graph

· do not go across all bridges (edges) exactly once

[image: image2.png]Konigsberg Bridge

Konigsberg is a city which was the capital of East
Prussia but now is known as Kaliningrad in Russia. The
city is built around the River Pregel where it joins
another river. An island named Kniephof s in the
middle of where the two rivers join. There are seven
bridges that join the different parts of the city on both
sides of the rivers and the island.

People fried to find a way to walk al seven bridges
without crossing a bridge twice, but no one could find a
waytodo it The problem came to the atenfion of a
Swiss mathematician named L eonhard Euler
(pronounced "oiler"). Gity of Konigsberg

In 1735, Euler presented the solution to the problem before the Russian
Academy. He explained why crossing all seven bridges without crossing a
bridge twice was impossible. While solving this problem, he developed a new
mathematics field called graph theory, which later served as the basis for
another mathematical field called topology.

Euler simplified the bridge problem by representing each land mass as a point
and each bridge as a line. He reasoned that anyone standing on land would have
1o have a way to get on and off. Thus each land mass would need an even
number of bridges. But in Konigsberg, each land mass had an odd number of
(1707-1783) bridges. This was why all seven bridges could not be crossed without crossing
oone more than once.

[image: image3.png]. By

" agan

Fejolmich

[image: image4.png]

[image: image5.png]

· the degree of a vertex

· # of edges incident to the vertex

· Eulerian path

· go through each edge exactly once and terminate at the start vertex iff the degree of each vertex is even

6.1.2 Definitions

· V(G): the sets of vertices of graph G

· E(G): the sets of edges of graph G

· G = (V, E)

· undirected graph

· (u, v) and (v, u) represent the same edge

· directed graph

· <u, v> represents one edge

· u: tail

· v: the head of the edge

[image: image6.png]@Gy ()G,

Figure 6.2: Three samplc graphs

· define the edges and vertices of a graph as sets

· a graph may not have an edge from a vertex, v, back to itself

· (v, v) are not legal
· G consists of two sets, V and E

· V is a finite, nonempty set of vertices

· E is a set of pairs of vertices(distinct)

· called self edges or self loops

· a graph may not have multiple occurrences of the same edge, called multigraph

[image: image7.png](a) Graph with a self cdge (b) Multigraph

Figure ixamples of graphlike structures

· complete graph

· a n-vertex, undirected graph with exactly n(n-1)/2 edges (the maximum number of edges in any n-vertex, undirected graph)

· G1 of FIG 6.2(a)

· if (u, v) is an edge in E(G)

· 1) u and v are adjacent
· 2) the edge (u,v) is incident on u and v

· if <u, v> is a directed edge

· 1) u is adjacent to v

· 2) v is adjacent from u

· 3) the edge <u, v> is incident to u and v

· a subgraph G' of G

· V(G') <= V(G) and E(G') <= E(G)

[image: image8.png](i)

0]

I’:w
Ny

(i) (iii)
(a) Some of the subgraphs of GG

"/\,

(v (0
|
| .
(T %
. B!
! 2
Qi) (i)

(b) Some of the subgraphs of G4

oy

(iv)

Figure 6.4: Some subgraphs

· path from u to v

· a sequence of u, i1, i2, ..., ik, v

· the length of a path = # of edges on a path

· simple path

· a path in which all vertices except possibly the first and last are distinct

· cycle

· a simple path in which the first and last vertices are the same

· u and v are said to be connected iff there is a path in G from u to v

· connected component, H, of an undirected graph is a maximal connected graph

[image: image9.png]Figure 6.5: A graph with two connected components

· tree is a connected acyclic graph

· a directed graph G is strongly connected iff for every pair of distinct vertices u and v, there is a directed path from u to v and also from v to u

· FIG 6.2(c) G3: not strongly connected

[image: image10.png]Figure 6.6: Strongly connected components of G,

· a strongly connected component

· a maximal subgraph that is strongly connected

· the degree of a vertex

· # of edges incident to that vertex

· if G is a directed fraph

· 1) in-degree of a vertex v = # of edges for which v is the head

· 2) out-degree of v = # of edges for which v is the tail

[image: image11.png]class Graph
{
// objects: A nonempty set of vertices and a set of undirected edges.
#/ where each edge is a pair of vertices.
public:
Graph (); /f Create an cmpty graph

void InsertVertex(Vertex v); /l Insert v into graph; v has no incident edges

void InsertEdge(Vertex u, Vertex v);
insert edge (u,v) into graph

void DeleteVertex(Vertex v);
/ Delete v and all edges incident to it

void Deletekdge(Vertex u, Vertex vy;
/ Delete edge (. v) from the graph

Boolean IsEmpty ();
/fif graph has no vertices return TRUE (1); else return FALSE (0)

List<Vertex> Adjacent(Vertex v);
/l return a list of all vertices that are adjacent to v

b

ADT 6.1: Abstract data type Graph

6.1.3 Graph representation

6.1.3.1 Adjacency Matrix

· the adjacency matrix of G = (V, E)

· A[i][j] = 1 iff the edge (i,j) is in E(G)

· how many edges are there in G

· O(n*n)

[image: image12.png]0
0
Y

0
0
0

000
00
00

0

4]

¢ 0000
1

1
40000

1

o

«

() Gy

0) Gy

(@) G,

Figure 6.7: Adjacency matrices

6.1.3.2 Adjacency Lists

· one list for each vertex in G

· the nodes in list i represent the vertices that are adjacent from vertex i

[image: image13.png]HeadNodes

data link

(0] —_— 1
m
121 0

HeadNodes

[V

=

Figure 6.8: Adjacency lists

· the adjacency list representation

· class Graph

· {

· private:
·
List<int> *HeadNodes;

·
int n;

· public:

·
Graph(const int vertices = 0): n(vertices)

·
{ HeadNodes = new List<int> [n];};

· };

· for G with n vertices and e edges, requires n head nodes and 2e list nodes

sequentially pack the nodes on the adjacency lists, eliminating the use of pointers
· use an array node [n + 2e + 1]

· node[i] gives the starting point of the list for vertex i

· node[n] is set to n + 2e + 1

[image: image14.png]int nodes [n + 2¢e + 1);

56 7 8 900111213 141516 17 18 19 20 21 22

I7\182(12221‘2‘l 1\0\0 3‘1\2 5?[4 5776

Figure 6.9: Scquential representation of graph G4

· the vertices adjacent from vertex i are stored in node[i] …, node[i+1]-1

· 노드 0에 인접한 노드들:

· node[0], …, node[0+1]-1

· = 9, …, 11-1

find the number of edges of G, using adjacency list
· O(n + e) time

· for a digraph, # of list nodes is e

· the out-degree of any vertex = # of nodes on its adjacency list

· determining the in-degree of a vertex is complex

· inverse adjacency lists

[image: image15.png]' q K

[2]‘ — | oJ

Figure 6.10: Inverse adjac lists for G4 (Figure 6.2(c))

· sparse matrix representation

[image: image16.png]head nodes

(shown twice) 0
{
o]
| | A—
1 ‘J w100

Figure 6.11: Orthogonal list representation for G of Figure 6.2(c)

6.1.3.3 Adjacency Multilists

· in the adjacency list representation of an undirected graph, each edge (u,v) is represented by two entries

· need to check if all the edges is visited exactly once

· the new node structure

[image: image17.wmf]m

vertex1

vertex2

list1

list2

· for each edge, there will be exactly one node

· m : indicate whether or not the edge has been examined

[image: image18.png]HeudNodes

101 F'i - NO 01 NIN3
! a -

[~ NI 012 N2iN3
2re e -
13 Joo-=N2 O3 0 w4

The lists are

vertex 0: N0 — N1 — N2
vertex 11 NO— N3 — N4
vertex 2: NI 5 N3 > N3
vertex 3: N2 — N4 — N5

edge (0,1)
cdge (0,2)
edge (0,3)
edge (1,2)
edge (1,3)

edge (2,3)

Figure 6.12: Adjacency multili

or G, of Figure 6.2(a)

· FIG 6.12 : adjacency multilists for G1

· list node: 하나의 edge 표현

[image: image19.png]@Gy ()G,

Figure 6.2: Three samplc graphs

6.1.3.4 Weighted Edges

· network

· a graph with weighted edges

6.2 Elementary graph operations

· for G = (V, E) and a vertex v in V(G), visit all vertices in G that are reachable from v

6.2.1 Depth-first search

[image: image20.png]void Graph ::DFS{() /{ Driver

{
visited = new Boolean [n)5 // visited is declared as a Boolean= data member of Graph.
for (int i = 03 i < n3 i++) visited |i | = FALSE; / initially, no vertices have been visited
DFS(0); // start search at vertex 0
delete [] visited;

}

void Graph::D onst int v) // Workhorse
visit all previously unvisited vertices that are reachable from vertex v

t
visired [v] = TRUE;
for (each vertex w adjacent to v) // actual code depends on graph representation used
if (! visited (w]) DFS (w);

}

Program 6.1: Depth-first search

[image: image21.png](U

m
121

(b)

Figure 6.16: Graph G and its adjacency lists

6.2.2 Breadth-first search

[image: image22.png]void Graph::BFS(int v)
/1 A breadth first search of the graph is carried out beginning at vertex v
I visited |i | is set to TRUE when v is visited. The algorithm uses a queue

{

visited = new Boolean [n |5 [/ visited is declared as a Boolean* data member of Graph.
for (int i = 0; i < n; i++) visited [] = FALSE; // initially. no vertices have been visited
visited {v] = TRUE;
Quene<int> g; // ¢ is a queue
g.Insert (v); 1/ add vertex to the queue
while (\q.IsEmpry () {
v = *g.Delete (v); /f remove vertex v from the queuc
for (alt vertices w adjacent (0 v) / actual code depends on graph representation used
if (! visited [w]) {
g.Insert (w);
visited [w] = TRUE;
1
} / end of while loop
delete [] visited;

}

Program 6.2: Breadth-first search

6.2.3 Connected components

· obtain the connected components

· make repeated calls to DFS(v) or BFS(v), where v has not yet been visited

[image: image23.png]void Graph:: Components ()

Determine the connected components of the graph

{

/1 visited is assumed to be declared as a Boolean* data member of Graph

visited = new Boolean [n 3
for (int i = 0; i < n; i++) visited |i | = FALSE;
for (i =03 i < 5 i++)
if (! visited i]) {
DFS(i); // Find a component
OumpurNewComponent ();

}
delete [] visired;
t
Program 6.3: Determining connected components

· DFS(i); 하나의 connected component를 찾음

6.2.4 Spanning tree

· DFS or BFS partitions the edges of G into two sets, T(tree edges) and N(nontree edges)

· T may be determined by inserting the statement T = T + {(v,w)}

the edges in T form a tree that includes all the vertices of G

· called a spanning tree

[image: image24.png]N

Figure 6.17: A complete graph and three of its spanning ees

[image: image25.png](0% [0

(a) DFS (0) spanning tree (b) BFS(0) spanning tree

Figure 6.18: Depth-first and breadth-first spanning trees for graph of Figure 6.16

· depth-first spanning tree : FIG 6.18(a)

· breadth-first spanning tree: FIG 6.18(b)

· a spanning tree

· a minimal subgraph, G', of G such that V(G') = V(G), G' is connected

· a minimal subgraph : a graph with the fewest number of edges

6.2.5 Biconnected components(skip)

· assume that G is an undirected, connected graph

· a vertex v of G is an articulation point iff the deletion of v results in at least two connected components

vertices 1,3,5,7 in FIG 6.19(a) are the articulation points
· (v1, v2)의 경우에 v1은 no articulation point
· a biconnected graph is a connected graph that has no articulation points

· a biconnected component is a maximal biconnected subgraph H of G

[image: image26.png]P P
) C

)
>/

{b) Its biconnected components

Figure 6.19: A connected graph and its biconnected components

two biconnected components of the same graph can have at most one vertex in
common

· no edge can be two or more biconnected components

· find the biconnected components by using depth-first spanning tree

· a depth-first spanning tree with root 3

[image: image27.png]and -
40D 7y
| 6
372 (\5/‘
<y 6
2 7
()

(b)

Figure 6.20: Depth-first spanning tree of Figure 6.19(a)

· a nontree edge (u, v) is a back edge iff u(v) is an ancestor of v(u)

· show the nontree edges of G by broken lines

· a cross edge

· a nontree edge that is not a back edge

· no graph can have cross edges with respect to any of its depth-first spanning trees

· the depth-first number, dfn, of the vertex

· the numbers outside the vertices

· the sequence in which the vertices are visited during DFS

· dfn(0) = 5, dfn(9) = 10

· dfn(u) < dfn(v) if u is an ancestor of v in the depth-first spanning tree

· the root of the depth-first spanning tree is an articulation point iff it has at least two chilren

· any other vertex u is an articulation point iff it has at least one child, w

· not possible to reach an ancestor of u using descendants of w and a single back edge

· low(w) : the lowest depth-first number that can be reached from w using a path of descendants followed by at most one back edge

· low(w) = min{ dfn(w), min{low(x) | x is a child of w}, min {dfn(x) | (w,x) is a back edge}}

· u is an articulation point, iff u is the root of the spanning tree and has two or more children or u is not the root and u has a child w such that low(w) >= dfn(u)

[image: image28.png]T T T

Cveriex | 0 617 %Y
an s '—'74‘—% 09
tow 5] 676 10,9

Figure 6.2

ifn and fow values for the spanning tree of Figure 6.20(b)

· every student should be able to make FIG 6.21!!!

[image: image29.png]void Graph::DfiLow(const int x) // begin DFS at vertex x
{
num = 15 // mon is an int data member of elass Graph
dfn = new intlnl; // dfn is declared as int in class Graph
low = new int[n|; // fow is declared as int+ in class Graph
for (inti=0; i< nyi++) {dfnli]=low|i| =03}
DfnLow (x,—1); // start at vertex x
delete [dfins
delete || low;

}

void Graph::DfnLow (const int u, const int v)
/ Compute dfn and low while performing a depth first scarch beginning at vertex
/1 v is the parent (if' any) of u in the resulting spanning tree.
{
dfin (1] = ltow lu] = mon++;
for (each vertex w adjacent from u) // actual code depends on graph representation
if (dfn [w] == 0) { // w is an unvisited vertex
DfaLow (w,u);
Tow [] = min2(fow [«], low [w)3
}
else if (w '=v) Jovw |l | = min 200w (1), dfin {w]); // back edge
}

Program 6.4: Computing dfn and low

[image: image30.png]void Graph::Biconnected ()

{
num = 13 // nurm is an int data member of class Graph
dfn =new int|n]; // dfn is declared as int* in Graph
low = new int{n|; // low is declared as int= in Graph
for (inti=0;i<nyi++) {dfnli ow [1] =03}
Biconnected (.—1); /f stant at vertex (¢
delete [] dfin;
delete [} low;

}

void Graph::Biconnected (const int i, const int v)
// Compute dfn and low, and output the edges of G by their biconnected components
i/ v is the parent (if any) of u in the resulting spanning tree.
Sis an initially cmpty stack declared as a data member of Graph
{
dfnlu] = low[u]= num++;
for (each vertex w adjacent from w) { // actval code depends on graph representation
if (v 1= w) && (dfn|w] < dfn {u])) add (. w) to stack S;
if (dfin (w } == 0) { // w is an unvisited vertex
Biconnected (w,u);
low [} = min2(fow |u |, fow |w |);
i (low [w | >=dfn |4)
cout << "New Biconnected Component: " << endl:
do{
delete an edge from the stack S:
let this edge be (x. y}:
cout << x << ", " << y << endl;
} while ((x, y) and («, w) are not the same edge)
}

}
else if (w != v) low [] = min2(low [1], dfn [w1); // back edge

}

Program 6.5: Oulputting biconnected components when n > |

6.3.1 Kruskal's Algorithm

· build a minimum-cost spanning tree T by adding edges to T one at a time

· select the edges for inclusion in T in nondecreasing order of their cost

· an edge is added to T if not a cycle

· select n-1 edges for inclusion in T for G with n vertices

[image: image31.png](d) (e) [$3)

Figure 6.22: Stages in Kruskal’s algorithm

[image: image32.png]1 T=@

2 while (7 contains less than n — | edges) && (£ not empty)) {

3 choose an edge (v,w) from £ of lowest cost:

4 delete (x.w) from EX

5 if ((v.w) docs not create a cycle in T) add (mw)to T3

6 else discard (v.w);

71

& if (7 contains fewer than n — 1 edges) cout << “"no spanning tree” << endl;

Program 6.6: Kruskal's algorithm

· choose an edge (v,w) from E of lowest cost

· sort these edges into nondecreasing order in time O(e log e)

· in a min heap, determine the next edge in O(log e) time

· if ((v,w) does not create a cycle in T) add(v, w) to T;

· place all vertices in the same connected component of T into a set

two vertices v and w are connected in T iff they are in the same set
· the use of trees in the representation of sets

· v,w가 이미 the same set에 있으면 cycle 형성

6.3.2 Prim's Algorithm

· the set of selected edges forms a tree

· begin with a tree T that contains a single vertex

add a least-cost edge (u, v) to T such that T + {(u, v)} is also a tree
· TV = {0}

· (0,5), (0,1) 중에서 cost가 min인 edge를 선택

· TV = {0,5}이 되며 후보 edge는 (0,1), (5,4) 이 됨

· TV에 있는 노드 집합에 연결된 edge 중에서 cost가 min인 것을 선택함
[image: image33.png]Figure 6.23: Stages in Priot’s algorithm

· the set of selected edges forms a tree

the set of selected edges in Kruskal’s algorithm forms a forest at all times

[image: image34.png]/fAssume that G has at least one vertex.
TV = {0}; / start with vertex 0 and no edges
for (T = O T contains fewer than n -1 edges; add (v, v) o 7)
{
Let (u. v) be a least-cost cdge such thatu e TVand v e TV:
if (there is no such edge) break;
add v to 7V;
}

if (7 contains fewer than 711 edges) cout << "no spanning tree” << endl;

Program 6.7: Prim’s algorithm

6.3.3 Sollin's Algorithm

· select several edges at each stage

· the selected edges form a spanning forest

· select one edge for each tree in a spanning forest, with all n graph vertices

· we select one edge for each tree in this forest

· the selected edge is a minimum-cost edge that has exactly one vertex in the
tree

[image: image35.png]‘0

10, -
%

0

Figure 6.24: Stages in Sollin’s algorithm

· stage 1: FIG 6.24(a)

· stage 2: FIG 6.24(b)

본 강의 자료의 그림 및 알고리즘 발췌
저자 : HOROWITZ

타이틀 : FUNDAMENTALS OF DATA STRUCTURES IN C++ 2nd Edition (2006)

공저 : SAHNI, MEHTA

 출판사 : Silicon Press
x

w

x

w

X is a child of w

(w,x) is a back edge

_1031599847

