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With certain symmetries reflections from different lattice planes cancel out

- Systematic absences.

Systematic Absences - Centering

If the lattice is not primitive certain classes of hkl peaks will be
missing. These are called systematic absences and we can use them
to determine the space group (or at least narrow down the
possibilities). We will derive this relationship next lecture, but
consider that if you have a centered cell it is always possible to draw
a smaller primitive cell, and a smaller cell should have fewer peaks.

Centering Allowed peaks

I-centered — Peaks where h+k+l is an even number

F-centered — Peaks where hkl are either all even #s or all odd #s
C-centered — Peaks where h+k is an even number

B-centered — Peaks where h+l is an even number

A-centered — Peaks where k+| is an even number

R-centered — Peaks where -h+k+| is a multiple of 3




Systematic Absences - Screws & Glides

Screw axes and glide planes also have elements of translation and
they will give systematic absences as well. Some examples are given
below, others can be deduced from the pattern.

Centering Allowed peaks

2, screw axis || to a — hOO peaks are only allowed when h is an even #

2, screw axis || to b — OkO peaks are only allowed when k is an even #

2, screw axis || to ¢ — 00l peaks are only allowed when | is an even #

3, screw axis || to ¢ — 00l peaks are only allowed when | = 3n (n = integer)
4, screw axis || to ¢ — 00l peaks are only allowed when | = 4n (n = integer)

a glide plane L ¢ — hkO peaks are only allowed when h is an even #

b glide plane L ¢ — hkO peaks are only allowed when k is an even #

n glide plane L ¢ — hkO peaks are only allowed when h+k is an even #
a glide plane L b — hOl peaks are only allowed when h is an even #

¢ glide plane L b — hOl peaks are only allowed when | is an even #

n glide plane L b — hOl peaks are only allowed when h+l is an even #



