5.6 Heaps

5.6.1 priority queues

· used to implement priority queues

· delete the element with highest (or lowest) priority

· insert an element with arbitrary priority into the queue

· a data structure that supports these two operations: a max(min) priority queue

· template <class Type>

· class MaxPQ {

· public:

·
virtual void insert(const Element <Type>&) = 0;

·
virtual Element <Type> * DeleteMax (Element <Type>&) = 0;

· };

· Element<Type>

· a struct with a key data member
· MaxPQ
· can be realized by the number of different data structures
· unordered list

· ordered list
· impossible to implement the MaxPQ operations without knowing the data

structures

· the way to represent a priority queue

· an unordered linear list

· insertion at the end of this list: O(1)

· a deletion requires a search for the element with largest key: O(n)

· use an ordered linear list

· the delete time: O(1)

· the insert time: O(n)

· use a max heap: O(log n)

5.6.2 Definition of a max heap

· a max (min) tree

a tree in which the key value in each node is no smaller (larger) than the key values in its children

· a max(min) heap: a complete binary tree that is a max(min) tree

[image: image1.png]{10 S 6

,‘);

T30

Figure 5.24: Max heaps

· ADT for a max heap

[image: image2.png]template <class KeyType>
class MaxHeap : public MaxPQ<KeyType>
{
/I objects: A complete binary tree of n > 0 elements organized so
/ that the value in each node is at least as large as those in its children
public:
MaxHeap(int sz = DefaultSize);
// Create an empty heap that can hold a maximum of sz elements.

Boolean IsFull ();
/1 If number of elements in the heap is equal to the maximum size of the
/ heap, return TRUE (1); otherwise, return FALSE

void Insert(Element<KeyType> item);
/1 If IsFull (}, then error; else insert ifem into the heap.

Boolean IsEmpty ()
/1 1f number of elements in heap is 0, return TRUE (1); else return FALSE (0)

Element<KeyType>+ Delete(KexType& x);
HIf IsEmpty (), return 0; else remove an instance of the largest element
/1 in the heap and save it in x. Return a pointer to x.

h

ADT 5.2: Abstract data type MaxHeap

· ADT, a max heap의 기본 연산

· Creation of an empty heap

· Insertion of a new element into the heap

Deletion of the largest element from the heap

· represent a max heap using an array heap
· the private data members of class MaxHeap

· private:

·
Element<Type> *heap; //array
·
int n; // current size of max heap

·
int MaxSize; // maximum allowable size of heap
· the MaxHeap constructor

[image: image3.png]MaxHeap:MaxHeap (int sz = DefaultSize)
{
Muxsi

heap = new

nw=10;
lement <Type >[MaxSize +1]; /f heap [0] is not used

}

Program 5.17: Max heap constructor

5.6.3 Insertion into a max heap

· the resulting heap from inserting a new element

[image: image4.png]are

(¢) (d)

Figure 5.26: [nsertion into a max heap

· insert 5, FIG 5.26(c)

· insert 21, FIG 5.26(d)

· to implement the heap insertion

· need to go from an element to its parent

· assume heap[n++] is the location to be inserted

[image: image5.png]template <class Tvpe>
void MaxHeap<Type>::insert{const Element <Type >& x)
/f insert x into the max heap
{
if (n == MaxSize) { HeapFuil (); return;}
A+
for (inti=n;1;){
if (i == 1) break; // at root
if (ukey <= heap [i /2] kev) break;
#f move from parent 10
heap [i 1= heap [i 72];
if=2
}
heap (i]=
b

Program 5.18: Insertion into 4 max heap

5.6.4 Deletion from a max heap

· a deletion from the heap of FIG 5.26(d)

· remove 21, result in empty root node

· remove the element in position 6 (the element 2)

· insert 2 into the root

· move 20 into the root

[image: image6.png](@) (b) (c)

Figure 5.27: Deletion from a heap

· a deletion 20 from FIG 5.26(a)

· remove 10 from position 5

· move 15, 14 up

[image: image7.png]template <class Type>
Llement <Type >* MaxHeap <Type >::DeleteMax (Element <Type >& x)
/ Delete from the max heap
{
if (') { HeapEmpty {); return 0;}
x = heap [}; Element <Type > k = heap |n |y n——;
for(inti=1j=2j<=m)
{
i <) if (heap [| key < heap | +11kex) j4+;
j points Lo the larger child
if (k.key >= heap (j] key) break;
heap[i]1=heap|jl; # move child up
i=j;j*=2; //maveiand jdown

i
heap|il=k;
return &.ux;

}

Program 5.19: Deletion from a max heap

5.7 Binary search trees

5.7.1 Definition

· a binary search tree

· a binary tree(empty or non-empty tree)

· the keys in the left (right) subtree < (>) the key in the parent

· the left and right subtrees are also binary search trees

[image: image8.png]"0

Figure 5.28: Binary trees

5.7.2 Searching a binary search tree

[image: image9.png]template <class Type> //Driver

BstNode <Type >* BST <1Tvpe >::Search(const Element <Type >& x)

// Search the binary search tree (*this) for an element with key t.

/1 1f such an element is found, return a pointer to the node that contains it.
{

return Search(root, x);

l

template <class Type> // Workhorse
BstNode <Tvpe >+ BST <Type >::Search(BstNode <1ype >* b, const Elemeni <T wpe >& x
{
if (!h) return 0;
= b —datu.key) return b
» < b —data.key) retarn Search (b —LeftChild x);
return Search (b —RightChild x);

)

Program 5.20: Recursive scarch of a binary s

[image: image10.png]template <class 7ype>
BsiNode <Type >* BST <Tvpe >::iterSearch(const Element <Type >& x)
/1 Search the binary search tree for an element with key x
{
for (BstNode <Type > %t = root; ;)
{
if (x.key == 1 >data kev) return t;
if (vkey <t —data.kev) 1 = t —LeftChild;
else 1 = t 5 RighiChild;
}

return 0;

}

Program 5.21: Iterative search of a binary search tree

· search by rank

· an additional field LeftSize
· define the rank of a node to be its position in inorder.

· one plus the number of elements in the left subtree of the node
· Fig 5.28(b) the node 30의 LeftSize = 3

[image: image11.png]"0

Figure 5.28: Binary trees

[image: image12.png]template <class Type>
BstNode <Tipe >+ BST <Type >::Search(int k)
J# Search the binary scarch tree for the &th smallest element
{
BstNode<Type> ¥t = root;
while (1)
{

if (k ==t >lefiSize) return t;
if (k < t >LefiSize) t = t »LeftChild;
else {
k —= LeftSizes
1= t SRightChilds
}
}

return O3

}

Program 5.22:

ching a binary search tree by rank

search for the kth smallest element

5.7.3 Insertion into a Binary Search Tree

5.7.4 Deletion from a binary search tree

· deletion of a leaf element is easy

· deletion of a nonleaf element that has only one child

· change the pointer from the parent node to the single-child node

· deletion of a nonleaf node that has two childs

· replace the deleted element by the largest element in its left subtree orthe smallest one in its right subtree

· then proceed to delete this replacing element from the subtree

5.7.5 joining and splitting binary trees

· (a) C.ThreeWayJoin(A, x, B)

· create a binary search tree C consisting two subtrees A and B as well as the key x

· A < x.key < B

· (b) C.TwoWayJoin(A, B)

· join the two binary search trees, small and big
· first delete from A the record x with the largest key,

· the resulting binary search tree = A',

· perform the three-way join operation C.ThreeWayJoin(A', x, B)

· (c) A.Split(i, B, x, C)

· split A into B, x, C

· B < i.key < C

· x.key = i.key

· construct the two search trees B and C
· where useful?

Adjust an unbalanced binary search tree

· Binary search tree는 insert에 의해 불균형됨

· For making balanced binary search tree

5.7.6 Height of a binary search tree

· the height of a binary search tree with n elements

· the worst case: n

· O(logn) on the average

balanced search tree: search trees with a worst-case height of O(logn)

· AVL, 2-3, 2-3-4, red/black, B-trees

5.8 Selection trees(skip)

5.8.1 Introduction

· run

· have k ordered sequences of some records

· be in nondecreasing order of a designated field called the key

· merge n runs with n records

· output the record with the smallest key among runs

· make n-1 comparisions to determine the next record to output

· need to reduce # of comparsions needed to find the next smallest key by using selection tree

5.8.2 Winner trees

· a complete binary tree in which each node represents the smaller of its children
· a complete binary tree: sequential representation
· the root node is the smallest node in the tree

· each nonleaf node is the winner of a tournament

· need to restructure the tree after outputtng the root node

[image: image13.png]= hl

|
s
Bacrl
T L
[=

|
| [
i H I
' [

rnl o2 mn3 ron4 S rné nm7 o8

Figure 5.31: Winner tree for k = 8. showing the first three keys in each of the eight runs

· each node will contain only a pointer to the record it represents

5.8.3 Loser trees

· restructuring the winner tree after the record with the smallest key is output

· play tournaments between sibling nodes along the path from the output node to the root

· sibling nodes are the losers of tournaments

· simplify the restructuring process by placing in each nonleaf node a pointer to
the record that loses the tournament

· loser tree

· a selection tree in which each nonleaf node retains a pointer to the loser

· add an additional node, node 0, to represent the overall winner

· sibling nodes along the path from the deleted node to the root are not accessed

[image: image14.png]0~ overall

\?f winner

Figure 5.33: Loser tree corresponding to winner tree of Figure 5.31

5.9 Forests

· definition: a forest is a set of disjoint trees
· several forest operations

· transform a forest into a binary tree

· forest traversals

· use forests to represent disjoint sets

5.9.1 Transforming a forest into a binary tree
· forest of trees: T1, T2, …, Tn

· binary tree of trees: B(T1, …, Tn)

· 1) root: root(T1)

· 2) left subtree : B(T11, T12,…, T1m) where T11, …, T1m are the subtrees of root(T1)

child는 left child로 표현

· 3) right subtree: B(T2, …, Tn)

· siblings은 right child로 표현

· obtain the binary tree representation of each of the trees in the forest

· link these binary trees together through the RightChild field of the root nodes

[image: image15.png]Figure 5.34: Three-tree forest

[image: image16.png]Figure 5.35: Binary tree representation of forest of Figure 5.34

5.9.2 Forest traversals

· preorder traversal of binary tree T is equivalent to the visited nodes of F in forest preorder

· 1) if F is empty, then return

· 2) visit the root of the first tree of F

· 3) traverse the subtrees of the first tree in forest preorder
· 4) traverse the remaining trees of F in forest preorder

5.10 Set representation

5.10.1 Introduction

· the use of trees in the representation of sets

· assume the sets are pairwise disjoint

· S1 = {0, 6, 7, 8}, S2 = {1, 4, 9}, S3 = {2, 3, 5}

[image: image17.png]Figure 5.36: Possible tree representation of sets

· set operations

· 1) disjoint set union

· 2) find(i)

· find the set containing element i

5.10.2 Union and find operations

· obtain the union of S1 and S2

[image: image18.png]Siuss or

Siuss

Figure 5.37: Possible representations of §| U S,

· to set the parent field of one of the roots to the other root

· keep a pointer to the root of the tree or set name has a pointer to the root node

[image: image19.png]Set
Name Pointer

; I

! ! w0

$» } " é
[N

5 “ |

Figure 5.38: Data representation for $, ;.

· to unite sets Si and Sj

· unite the trees with roots FindPointer(Si) and FindPointer(Sj)

· FindPointer() : take a set name and return the root of the tree that represents it

· find(i)

· determine the root of the tree containing element i

· union(i, j) requires two trees with roots i and j to be joined

· represent the tree nodes using an array parent[MaxElements]

[image: image20.png]Figure 5.39: Array representation of $1., 8

5. and S5 of Figure 5.36

[image: image21.png]class Sets {
publie:
Set operations follow

private:
int ¥parent;
int n2; // number of set clements

k
Ses ::Sets(int 52 = HeapSize)
{
n=sz
parent = new int|sz J;
for (int i =0; i <nji++) parent || =-1;
}

Program 5.25: Class definition and constructor for Sets

· the ith element of this array gives the parent pointer of the corresponding tree node

· find(i)

· follow the indices starting at i and continuing until we reach a node with parent value -1

· union(i, j)

· the first tree becomes a subtree of the second

· parent[i] = j

[image: image22.png]void Sets ::SimpleUnion(int i, int j)
1/ Replace the disjoint sets with roots i and j,

{
parent |i] = j

}

= j with their union

int Sers ::SimpleFind(int i)
// Find the root of the tree containing element ¢
{
while (parent (i] >=0) i = parent|i |3
return i;

t

Program 5.26: Simple algorithins for union and find

Analysis of simpleUnion and simpleFind

· start off with n elements (Si = {i}), parent[i] = -1

· the sequence of union-find operations

· union(0,1), union(1,2), union(2,3), ..., union(n-2,n-1)

· find(0), find(1), ..., find(n-1)

· result in the degenerate tree of FIG 5.40

· a find for an element at level i of a tree : O(i)

[image: image23.png]Figure 5.40: Degenerate tree

· need to avoid the creation of degenerate trees

· make use of a weighting-rule for union(i,j)

· if # of nodes in the tree with root i < # of nodes in the tree with root j,

·
then make j the parent of i

·
else make i the parent of j

[image: image24.png]initial

ess 0
LN
H®3
union (0,3) union (0,n—1)

Figure 5.41: Trees obtained using the weighting rule

· to implement the weighting rule, maintain a count field in the root of every tree

· maintain the count in the parent field of the roots as a negative number

[image: image25.png]void Sets :: WeightedUnion{int i, int j)
4/ Union sets with roots i and j, i#j, using the weighting rule.
/ parent|i] = —count |i] and parent {j] = —count [§ 1.

{

int femp = parent {i | + parent [j 1;
if (parent [i | > parent [j) { /1 { has fewer nodes
pareni i} = j;
parent |j | = temp;
}
else { // j has fewer nodes (or i and j have the same number of nodes)
parent{jl =13
parent|i] = tempy
}
}

Program 5.27: Union algorithm with weighting rule

Analysis of weightedUnion and SimpleFind

· the maximum time to perform a find

· log2m
· Lemma 5.5

· start with a forest of trees

· let T be a tree with m nodes

· perform unions using function WeightedUnion

· the height of T is no greater than [log2m] + 1

· Proof

· 1) true for m = 1

2) assume it is true for all trees with i nodes, i ≤ m -1

· 3) show that it is also true for i = m

· let T be a tree with m nodes

· consider the last union operation union(k,j)

· Let a be # of nodes in tree j, and m-a be # of nodes in tree k

· assume 1 (a (m/2

· the height of T is the height of k

·
the height of T ([log2(m-a)] + 1 ([log2m]+1

· or (the height of j) + 1

·
the height of T ([log2a] + 1 + 1 ([log2m/2] + 2 <= [log2m] +1
Example 5.3

· initial configuration : parent[i] = -count[i] = -1

· union(0,1), union(2,3), union(4,5), union(6,7), union(0,2), union(4, 6), union(0,4)

[image: image26.png][l o N g WA ol B Gl W ol B ol VR RV

OO AN
ONORCOBOROROBONG

(a) Initial height-1 trees

=21 [-2] -2]
(0) [CS O
T/ Ny v
5 &) %
] & Q)

{b) Height-2 trees following union (0,1), (2,3), (4.5), and (6,7)

o)

)
®

-8]
N
A0
T
(Y7~ 2) D
N NS 4
5 ’\
ONOMRC
;
1<)

(d) Height-4 tree following union (0.4)

-

Figure 5.42: Trees achieving worst-case bound

· the time to process a find: O(log m)

· f find operations: O(f log m)

· modify the find algorithm using the collapsing rule

· [Collapsing Rule]

· if j is a node on the path from i to its root and parent[i] != root(i), then parent[j] = root(i)

[image: image27.png]int Sets ::Collupsing Find(int i}
/1 Find the root of the tree containing element 7.
Use the collapsing rule to collapse all nodes from i to the root
{
for (int r=i5 purent |] >= 05 r = parent ¢ 1); // find root
while (i != 1) {
int s = parent [];
parent|i|=r;
i=3;
}
return r;

}

Program 5.28: Find algorithm with collapsing rule

본 강의 자료의 그림 및 알고리즘 발췌
저자 : HOROWITZ

타이틀 : FUNDAMENTALS OF DATA STRUCTURES IN C++ 2nd Edition (2006)

공저 : SAHNI, MEHTA

 출판사 : Silicon Press
