CHAPTER 1 BASIC CONCEPTS
1.1 Overview : System Life Cycle
a solid foundation in data abstraction and encapsulation, algorithm specification, and performance analysis and measurement
provide the necessary methodology to design and implement large-scale S/W
regard programs as systems that contain many complex interacting parts

a development process : system life cycle requirements, analysis, design, coding, verification

Requirements
begin with a set of specifications that define the purpose of the project
must develop rigorous input and output descriptions

Analysis
break the problem down into manageable pieces
two approaches to analysis: bottom-up and top-down
1) the bottom-up approach
· emphasis on the coding fine points
· result in many loosely connected, error-ridden segments

2) the top-down approach
· divide the program into manageable segments
· refined to take into account low-level details
· preferred approach for developing complex software systems

Design
perspectives of the data objects that the program needs and the operations performed on them
lead to the creation of abstract data types
require the specification of algorithms and a algorithm design strategies
specify the information required for each data object
ignore coding details
deferring implementation issues
create a system that could be written in several programming languages
have time to pick the most efficient implementation

Refinement and Coding
choose representations for data objects and write algorithms for each operation
a data object's representation determines the efficiency of the algorithm
should write the algorithms that are independent of the data object
if good design, then can absorb changes easily

Verification
develop correctness proofs for the program
test the program with a variety of input data
remove errors

1.2 Object-Oriented Design
using the philosophy of divide-and-conquer
break up a complex software design project into # of simpler subobjects
tackle simpler subobjects individually

1.2.1 Algorithmic Decomposition Versus O-O encapsulation
algorithmic or functional decomposition
view software as a process
decompose the software into modules(steps of the process)
modules : implemented by procedures or functions

O-O decomposition
view software as a set of well-defined objects that model entities in the application domain
objects interact with each other to form a software system
address functional decomposition after defining objects

advantage of O-O decomposition
reuse of software
flexible software systems that can evolve as system requirements change
----------------------- skip ---
1.2.2 Concepts of O-O Programming
Def. of object
an entity that performs computations and has a local state
viewed as a combination of data and procedural elemnets

Def. of O-O Programming
objects are the fundamental building blocks
encapsulation

each object is an instance of type
classification

inheritance relationships
is-a (generalization, specialization)

Def. of O-O language
support objects
require objects to belong to a class
support inheritance

object-based language : do not support inheritance

1.2.3 Evolution of C++
four generations of higher order programming languages	
1) 1st generation: FORTRAN
· ability to evaluate mathematical expressions
2) 2nd generation: Pascal and C
· 	on effectively expressing algorithms
3) 3rd generation: Modula and Ada
· 	introduce the concept of abstract data types
object-based language

4) 4th generation: O-O language (C++, Objective C, Smalltalk)
· the use of inheritance

design of C++ : Bjarne Stroustrup of AT&T Bell Laboratories in the early 1980s
influenced by Simula67 and Algol68

the reason that C is widely-used in industry
efficient: # of low-level features, which utilize hardware
flexible: used to solve problems in most application areas
available for most computers

C++: improve on C
implement data abstraction or inheritance
other improvements

1.3 Data Abstraction and Encapsulation

Def. of data encapsulation or information hiding
the concealing of the implementation details of a data object

Def. of data abstraction
the separation between the specification of a data object and its implementation

abstraction, encapsulation, information hiding result in better quality programs and more efficient programming techniques

the fundamental data types of C++
char, int, float, double
modifiers: short, long, signed, unsigned
support types derived from the fundamental data types
· include pointer and reference types

three mechanisms for grouping data in C++
the array
structs
classes

Def. of data type
a collection of objects and a set of operations that act on those objects

Def. of abstract data type
separate the specification of the objects and the specification of the operations from the representation of the objects and the implementation of the operations
emphasize the distinction between specification and implementation

Example 1.1 [Abstract Data Type NaturalNumber]
[image: ADT 1]
Two main sections in the defintion: the objects and the functions
define the objects in terms of the integers
makes no explicit reference to their representation
makes use of functions that are defined on the set of integers, namely plus, minus, equal, less than ..

develop well-designed programs by using data abstraction and encapsulation

Simplification of a software development
use the concept of data abstraction
facilitate the decomposition of the complex task into # of simpler subtasks

a top-down review of the problem
three data types A, B, C will be used
some additional code(called glue) to facilitate interactions among the three data types
provide the specifications of each data type

scenario 1: a team of 4 programmers
assign a programmer to each of the three data types
· implement his data type according to the specifications

no needs to know how the other programmers implement their portion of code

scenario 2: a single programmer
implement each data type one by one according to the specifications
help reduce # of things the programmer has to keep in mind at any time

Testing and Debugging
can test and debug each data type separately
simplify testing and debugging
[image: Fig 1]

Reusability
make it easier to extract the code for a data structure and its operations from a software system and use it in another software system
data abstraction and encapsulation: lead to implement data structures as distinct entities of a S/W system

Modifications to the representation of a data type
by information hiding, the implementation of a data type is invisible to the other program
a change in the internal implementation of a data type without affecting the rest of the program

--------------------------------- skip -----------------------------
1.4 Basics of C++

"a better C" : the expression is used to describe the C++ language
C and C++ having common features
C++ has # of features not associated with data abstraction and inheritance

1.4.2 Scope in C++

File scope
declarations that are not contained in function scope or class scope

Function scope
use labels anywhere within the function definition in which they are declared
only labels have function scope
only used as the targets of go to statements

Local scope
a name declared in a block : belong to a local scope consisting of that block
Class scope
declarations associated with a class definition
each class represents a distinct class scope
class의 instance variables

a variable is visible to a program only from within its scope
only access a variable defined in a block from within the block
can access a variable defined at file scope(a global variable) anywhere in the program

use the scope operator ::
a local variable reuses a global variable name in a block
· want to access the global variable
· use the scope operator to access the global variable
use extern
to declare the variable in another file
use static
to declare the same global variables in two files
· means different entities

1.4.3 C++ statements and operators
new and delete
<<, >> operators
operator overloading
allowed to have different functions depending on the types of the operands
· dynamic binding?
· polymorphism과의 차이는?

1.4.4 data declarations in C++
referenced types : a feature of C++ that is not a feature of C
a mechanism to provide an alternate name for an object

int i = 5;
	int &j = i;
j is a reference type

1.4.6 I/O in C++
cout / cin
<< operator

1.4.7 Functions in C++
two kinds of functions in C++: regular functions and member functions
member functions : functions that are associated with specific C++ classes
function 구성:
a function name, a list of arguments or signature (input), a return type, the body

1.4.8 parameter passing in C++
passed by value
the default parameter-passing mechanism
actual arguments are not inadvertently modified

passed by reference
need to explicitly declare an argument to be a reference type
execute faster if the object being passed requires more memory than its address
· because the overhead of copying the actual argument into the function's local store

pass constant references such as const T& a
const T&는 타입
one technique for retaining the advantages of both parameter-passing method
any attempt to modify a const argument in the function body : a compile-time error

one exception to the default parameter passing mechanism
array types are passed by reference
the array is not copied into the function's local store
with an array argument a (e.g., f(a))
· a pointer to the first element of a (i.e., &a[0])
usually denote arrays by pointers to the appropriate (e.g., f(int *a))
explicitly passing the size of the array as a separate parameter of the function

1.4.9 Function name overloading in C++
function overloading
more than one function with the same name 	 as long as they have different signatures

	int max(int, int);
	int max(int, int, int);
	int max(int *, int);
	int max(float, int);
	int max(int, float);

1.4.10 Inline functions
replace any calls to sum by the body of sum
eliminate the overhead of performing a function call and copying arguments

inline int sum(int a, int b)
{
		return a + b;
}

1.4.11 Dynamic memory allocation in C++

int *ip = new int;
//new: create an object of the desired type
// return a pointer to the data type
. . .
delete ip;

int *jp = new int[10];
. . .
delete [] jp;
· subscript operator ([]) : to inform the compiler that the object being created or deleted is an array

--
1.5 Algorithm Specification
1.5.1 Introduction
Def. of algorithm
a finite set of instructions that accomplishes a particular task
satisfy the following criteria
input
· 	zero or more quantities are supplied
output
· 	produce at least one quantity
definiteness
· 	clear and unambiguous instruction
finiteness
· 	the algorithm terminates after a finite number of steps
effectiveness
· 	must be feasible
every instruction must be basic enough to be carried out, by a person using only pencil and paper

differences between an algorithm and a program, in computational theory
a program does not have to satisfy finiteness criteria
an example : operating system

Example 1.2 [selection sort]
devise a program that sorts a collection of N integers
a simple solution
"From those integers that are currently unsorted, find the smallest and place it next in the sorted list"
· is not an algorithm -> not tell where and how the integers are initially stored or where we should place the result
· not-effective and/or not-definite ?
예: place it next: unclear instruction

[image: Prog 1]

· turn Program 1.5 into a real C++ program
called refinement

[image: Prog 1]

Example 1.3 [Binary search]
n>=1 distinct integers that are already sorted in a[0], . . ., a[n-1] determine if the integer x is present and if so to return j (x = a[J]); otherwise return -1

left = 0, right = n-1, middle = (left + right) / 2
 compare a[middle] with x

1) if x < a[middle] then set right = middle - 1
2) if x == a[middle} then return middle
3) if x > a[middle] then set left = middle + 1

[image: Prog 1]

1.5.2 Recursive algorithms
a recursive function requires a terminating condition
any program written using assignment, if-else statement, while statement can also be written using assignment, if-else, and recursion
when is recursion an appropriate mechanism for algorithm exposition?
when the problem itself is recursively defined
example: factorial computation N! = N * (N-1)!

[image: Prog 1]

Example 1.4[Recursive binary search]
pass left and right as parameters in the recursive version

[image: Prog 1]

invoke the recursive function : BinarySearch(a, x, 0, n-1)

Example 1.5[Permutation generator]
print all possible permutations of set
n! different permutations for given n elements
look at the four elements (a, b, c, d)
	a followed by all permutations of (b, c, d)
	b followed by all permutations of (a, c, d)
	c followed by all permutations of (a, b, d)
	d followed by all permutations of (a, b, c)
"followed by all permutations" : recursion
can solve the problem for a set with n elements if we have an algorithm that works on n-1 elements

[image: Prog 1]

//I = 0 => permutation a,xxx
//I = 1 => permutation b,xxx
//I = 2 => permutation c,xxx
//I = 3 => permutation d,xxx

Call perm(a, 0, n);

1.6 Performance Analysis and Measurement
many criteria to judge a program
what to do?
work correctly according to the original spec.
documentation that describes how to use and how to works
are functions created in such a way that they perform logical subfunctions?
readable code?

performance criteria for judging programs

Definition:
space complexity: the amount of memory a program needs to run to completion
time complexity: the amount of computer time a program needs to run to completion

a priori estimates of performance evaluation: performance analysis
a posteriori estimates of performance evaluation: performance measurement

본 강의 자료의 그림 및 알고리즘 발췌
저자 : HOROWITZ
타이틀 : FUNDAMENTALS OF DATA STRUCTURES IN C++ 2nd Edition (2006)
[bookmark: _GoBack]공저 : SAHNI, MEHTA
 출판사 : Silicon Press
image3.png
for (inti=0;i<nj;i++){
examine a |i] to ¢ [n-1] and suppose the smallest integer is at a [j1;
interchange a[i] and a |j] 5

}

Program 1.5: Selection sort algorithm

image4.png
1 void sort (int *a, const int n)
2 /f sort the n integers a|0] to aln —1] into nondecreasing order

3

4 for (inti=03i<n;i++)

5004

6 intj=i;

7 // find smallest integer in ali] to aln — 1]
8 for (intk=i+13k<n;k+t)

9 if(afk} <aljl) j=k;

H(/ interchange

i int temp = alil; ali] = alj}; alj] = remp;
12 }
13}

Program 1.6: Selection sort

image5.png
int BinarySearch (int *a, const int x, const int n)
/i Search the sorted array a [0], - -+ ,a[n—1] forx

(

for(initialize left and right; while there are more clements;)
€
let middie be the middle element;
switeh (compare (x, almiddle])){
case *>": set left to middle + 1; break;
case '< 1 right = middle —1; break;
: found x;
} # end of switch
}/ end of for
not found;
}// end of BinarySearch

Algorithm for binary search

image6.png
1 int BinarySearch (int *a, const int x. const int #)

2 // Search the sorted array a [0], ..., a[z—1] for x

3

4 for (int left = 0, right = n — 1; left <= right;) { // while more elements
5 int middle = (left + righty/2;

6 switch (compare (x, almiddle])) {

7 case *>'": left = middle + 1; break; // x > a[middie]

8 case *<’; right = middle — 1; break; // x < a[middle]

9 case '=": return middle; If x == a[middle|
10 } / end of switch
11 }# end of for
12 return —1; // not found

13 }// end of BinarySearch

Program 1.9: C++ function for binary search

image7.png
int BinarySearch (int *a, const int x, const int left, const int righr)
// Search the sorted array allefi], - - -, alright] for x
t
if (left <= right) {
int middle = (left + right)i2;
switch (compare (x. almiddie])) {
case '>": return BinarySearch(a. x, middle + 1, right); lf x > a|middie]
case '<': return BinarySearch(a. x, left, middle — 1); /f x < ajmiddle]
case '=": return middle; I/ x == a[middle)
}/ end of switch
}# end of if
return —1; // not found
} /1 end of BinarySearch

Program 1.10: Recursive implementation of binary search

image8.png
void perm (char *a, const int &, const int) // r is the size of a
1/ Generate all the permutations of @ [k], - - - ,a[n—1].
{
if (k== n — 1} { / output permutation
for (int i = 0; i < n; i++) cout << ¢i] << "'
cout << endl;

}

else {/#/alk], --- ,a[n—1} has more than one permutation. Generate these recursively.
for (i=k;i<nyiv+){
J interchange a(k} and al{]
char temp=alkl;alkl=alil;ali] = temp;
perm(a. k+1.n); / all permutations of @ [k +1], - ,¢[n—1]
/ interchange a [k] and a [i] again, to return to the original configuration
temp = alkl;alk] = alil;ali] = temp;
}
}// end of else
}/ end of perm

Program 1.11: Recursive permutation generator

image1.png
ADT NaturalNumber is
objects: An ordered subrange of the integers starting at zero and ending at the
maximum integer (MAXINT) on the computer.

functions:
for all x, y € NaturalNumber;, TRUE, FALSE e Boolean
and where +, -, <, ==, and = are the usual integer operations

0
if (x == 0) IsZero = true
else /sZero = false

Zero() : NaturalNumber
IsZero(x) : Boolean

Add(x,y) : NaturalNumber n= if(x+y<=MAXINT)Add=x+y
else Add = MAXINT

Equal(x, y) : Boolean w= if(x==y) Equal = TRUE
else Equal = FALSE

Successor(x) : NaturalNumber u= if (x == MAXINT) Successor = x
else Successor=x+ 1

Subtract(x, y) : NaturalNumber = if (x<y) Subtract =0

else Subtract =x -y

end NaturalNumber

ADT 1.1: Abstract data type NaturalNumber

image2.png
___ Program Code Program Code
‘ * “ i
[| |
! C

Glue
@ ()

Figure 1.1: Unshaded areas represent code that has to be searched for bugs: (a) data
abstraction is used (b) data abstraction is not used.

