6.4 Shortest paths and transitive closure

· Is there a path from A to B?

· which is the shortest path from A to B ?

6.4.1 Single source/All destinations : Nonnegative edges costs

· given a directed graph G = (V, E), a length function length(i, j), length(i,j) >= 0

· to determine a shortest path from v to each of the remaining vertices of G

[image: image1.png]0 g0

0 . Ay Path Length
o a0 157y 3 W 0.3 10
. o 2) 0.3,4 25
ie T 3 0.3.4.1 4
32 s ER 4 0.2 45
(a) Graph (b) Shortest paths from 0

Figure 6.25: Graph and shortest paths from vertex 0 (o all destinations

· let S be the set of vertices to which the shortest paths have already been found

· v: the source vertex

· let dist[w] be the length of the shortest path from v, going through only the vertices that are in S, and ending at w

· w not in S

· a greedy algorithm generates the shortest paths in nondecreasing order of path length

· 1) if the next shortest path is from v to u, then the path goes through only vertices that are in S

· 2) the destination of the next path generated

· the vertex u that has the minimum distance, dist[u], among all vertices not in S

· 3) the length of the shortest path from v to w (the vertex w not in S)

· dist[w] or dist[u] + length(<u,w>) due to a shorter path starting at v going to u and then to w

· the algorithm ShortestPath given by Edsger Dijkstra

· represent the set S by the array s[i], s[i] = TRUE if vertex i is in S

· represent the graph by length-adjacency matrix, length[i][j]

[image: image2.png]| void Graph::ShortestPath(const int n, const int v)
2/ dist{j], 0 < j <n.is set 1o the lengih ol the shortest path from vertex v to vertex j
3/ in a digraph G with n vertices and edge lengths given by length [i 1]

4
5 for (int i =05 i < n3 i++) {s1{] = FALSE; dist [] = fength [v1[i 15} / initialize
6 slv]=TRUE;

7 dist|v]=0;

8 for (i =057 < n =25 i++) { // determine n—1 paths from vertex v

9 int « = choose (n); // choose retumns a value u such that:

10 H dist [u] = minimum dist fw . where s [w] = FALSE
n s[u]=TRUE;

12 for (int w = 05 w < nj wa+)

13 ity w])

14 if (ddist (1] + fengih []|w | < dist |w)

15 dist [w] =dist [u] + length [u]]w |5

16 }/endof for (i=0: ...)

17}

Program 6.8: Dclermining the shortest paths

[image: image3.png]Chicago
1000

1200
San Francisco

1400

Los A}ge]es New Orleans

(a) Digraph

0 1 2 3 4 5 6 7
0 0 -
1 300 0
2 1000 800 0
3 1200 0
4 1500 0 250
5 1000 0 900 1400
6 0 1000
7 1700 0

(b) Length-adjacency matrix

Figure 6.26: Digraph for Example 6.5

[image: image4.png]Distance

Ieration S Vertex LA Sk DEN CHI BOST NY MIA NO
selected 0] (1 2] 131 41 5] 6l 7,

Initial | - e [e v e 1500 0 250 e 4o

| 1| 14} s soo 4w (250 0250 1150 1650
2 | {45} 6 I R oo 400 1250 0 250 1150 1650,

3| {456} 3 1 4es +oo 2450 1250 0 250 1150 1650

3! {4.56.3} 7 3350 2450 1250 O 250 1150 1650

5 [450637) 2 3350 2450 1230 0 250 1150 1650

6 {4 7.2} 1 3350 2450 1250 0 250 1150 1650

i | 14563720

I

Figure 6.27: Action of ShortestPath on digraph of Figure 6.26

· dist[6] = (-> 1150

· dist[6] = min(<4,6>, <4,5><5,6>)

6.4.2 Single source/all destinations: general weights

· consider some edge with negative length
· the function ShortestPath does not give the correct results. Why?
· consider the graph of FIg 6.28 by using the shortestPath(Program 6.8)

· the ShortestPath terminates with dist[2] = 5, dist[1] = 7

· the shortest path from 0 to 2 is 0,1,2

[image: image5.png]Figure 6.28: Directed graph with a negative-length edge

· require that the graph have no cycles of negative length

· ensure that shortest paths consist of a finite number of edges
· a shortest path between any two vertics of an n-vertex graph has at most n-1 edges

· S = {0} -> {0,1} -> {0,1,2}
[image: image6.png]Figure 6.29: Directed graph with a cycle of negative length

· the length of the shortest path from 0 to 2: - (
· let distl[u] be the length of a shortest path from the source v to u under the constraint that the shortest path contains at most l edges

· dist1[u] = length[v][u]

· if the shortest path from v to u with at most k edges has no more than k-1 edges, then distk[u] = distk-1[u]

· 2) if the shortest path from v to u with at most k edges has exactly k edges,
 then a shortest path from v to j followed by the edge <j, u>

· the path from v to j has k-1 edges, and its length is distk-1[j]

· find i that minimizes distk-1[i] + length[i][u]

· distk[u] = min{distk-1[u], min{distk-1[i] + length[i][u]}}

[image: image7.png]() A dirceted graph

dist*[7]

W W W U
[T
oo om ;g

(b) dist*

S N S N

wow oo

Figure 6.30: Shortest paths with negative edge lengths

· dist2[2]=min{dist1[2], min{dist1[I]+length[I][2]}} , dist1[3]+length[3][2] = 5-2 = 3

[image: image8.png]1 void Graph::BellmanFord(const int n. const int)

2 // Single source all destination shortest paths with ncgative edge lengths
3

4 Aor(inti=0;i<nyi++) dist[i | = length [v [|; # initialize dist

5 for (int 2k <=n-1; k++)

6 for (each « such that » '= v and u has at least one incoming edge)

7 for (each <i. u> in the graph)
8

9

if (dist | > dist [i]+ length [i ue |) dist |] = dist [i] + length [1u |3
}

Program 6.9: Bellman and Ford algorithm to compute shortest paths

· line 6-8

· ((n2) if adjacency matrices are used

· ((e) if adjacency lists are used

· line 5-8

· ((n3) if adjacency matrices are used

· ((n.e) if adjacency lists are used

6.4.3 All-pairs shortest paths
· find the shortest paths between all pairs of vertices u and v

· solved as n independent single-source/all-destinations problems using each of the n vertices of G as a source vertex

· time complexity: O(n4)

· define A[i][j] to be the length of the shortest path from i to j going through no intermediate vertex of index greater than k
· A-1[i][j] = length[i][j], the i-to-j paths can have no intermediate vertices on them

· 1) the shortest path from i to j going through no vertex with index greater than k does not go through the vertex with index k

· Ak[i][j] = Ak-1[i][j]

· 2) the shortest path goes through vertex k

· the shortest path : a subpath from i to k + another one from k to j

· Ak[i][j] = Ak-1[i][k] + Ak-1[k][j]

· Ak[i][j] = min{Ak-1[i][j], Ak-1[i][k] + Ak-1[k][j]}

·
A-1[i][j] = length[i][j]

[image: image9.png][
o
o

ta) Example digraph A"

23 7 0

(A’

A”‘ 0 1
5 0 4
1 ‘ 6 0
23 7

©) A®

=

11

0

Higure 6.31: Example for all-pairs shortest-paths problem

· A0[2][1] = min{A-1[2][1], A-1[2][0] + A-1[0][1]} = min{(, 3 + 4} = 7
[image: image10.png]1 void Graph::AllLengths(const int 1)
241 length | J|n | is the adjacency matrix of a graph with # vertices.
3/7ali11j1is the length of the shortest path between 7 and

4t

5 Aor(inti=0;i<ni++)

6 for (int j = 0; j < n; j++)

7 ali)ij)=tlength|i|1j1; # copy length into a

8 for(intk =05k <njk++) //fora path with highest vertex index 4

9 for (i =037 <ns i++) // for all possible pairs of vertices

10 for (int j =05 j <n; j++)

I ik +alkljD<alilliDelillil=alillk]+alk 1]

12}

Program 6.10: Ali-pairs shortest paths

6.4.4 Transitive closure

· consider a graph G with unweighted edges

· determine if there is a path from i to j for all values of i and j

· the transitive closure matrix, A+ [i][j] = 1 if there is a path of length > 0 from i to j

· require positive path lengths
· transitive closure
· use the function AllLengths (Program 6.10) to compute A+

· A+[i][j] = 1 iff a[i][j] < + (
· the reflexive transitive closure matrix, A*[i][j] = 1 if there is a path of length >= 0 from i to j

· require nonnegative path lengths

· obtained from A+ by setting all diagonal elements to 1

[image: image11.png]01
0lo 1
I‘OO
200
3000
47001

c - o~
c e — oo w
— o oo &

=

(b) Adjacency matrix A

bwn -
cococo-lo
oo o = =~

(d)A”

Figure 6.32: Graph G and its adjacency matrix A, A", and A*

6.5 Activity networks
6.5.1 AOV(Activity-On-Vertex) networks

[image: image12.png]Course number Course name Prerequisites

Ql Programming 1 None
2 Discrete Mathematics None
3 Data Structures cl.c2
Cc4 Calculus 1 None
Cs Caleulus IT C4

Co Linear Algebra s

7 Analysis of Algorithms C3,.C6
CR Assembly Language 3

<9 Operating Systems C7.C8
clo Programming Languages C7
cn Compiler Design C10
C12 Artificial Intelligence c7
C13 Computational Theory 7
Cl4 Parallel Algorithms C13
Cl5 Numerical Analysis Cs

(a) Courses needed for a computer science degree al a hypothetical university

(b) AOV network representing courses as vertices and prerequisites as edges

Figure 6.35: An activity-on-vertex (AOV) network

· AOV(activity-on-vertex) network

· the vertices represent tasks or activities

· the edges represent precedence relations between tasks

· vertex i in AOV network G is a predecessor of vertex j iff there is a directed path from i to j

· i is an immediate predecessor of j iff <i,j> is an edge in G

· a precedence relation that is both transitive and irreflexive is a partial order

· determine whether or not the precedence relation defined by its edges is
irreflexive

· determine whether or not the network contains any directed cycle

· test an AOV network for feasibility

· generate a linear ordering, v0, v1, ..., vn-1

· if vertex i is a predecessor of j in the network, then i precedes j in the linear ordering

· called a topological ordering

· the algorithm to sort the tasks into topological order

· list a vertex in the network that has no predecessor

[image: image13.png](a) Initial (b) Vertex 0 deleted (¢) Vertex 3 deleted

5

(d) Vertex 2 deleted (e) Vertex 5 deleted (f) Vertex | deleted

Topological order generated: 0.3,2,5, 1.4

Figure 6.36: Action of Program 6.11 on an AOV network (shaded vertices represent
candidates for deletion)

[image: image14.png]Input the AOV network. Let n be the number of vertices.
for (int / = 03 i < n; i++) // output the vertices
{
if (every vertex has « predecessor) return; // network has a cycle and is infeasible.
pick a vertex v (that has no predecessors:
cout << vy
delete v and all edges leading out of v from the networks;

}

[EIE N

NS

Program 6.11: Design of a topological sorting algorithm

· need to specify the data representation for the AOV network

· two requirement functions

· 1) decide whether a vertex has any predecessors

· need to maintain a count of the number of immediate predecessors

· 2) delete a vertex together with all its incident edges

· need to represent the network by its adjacency lists

· the deletion of all edges leading out of vertex v

· decreasing the predecessor count of all vertices on its adjacency list

[image: image15.png]count first

—
[o
my ot

.
[
B
4] 3) 0 ‘

Figure 6.37: Internal representation used by topological sorting algorithm

[image: image16.png]1 void Graph:: TopologicalOrder ()
24/ The n vertices of a network are listed in topological order
H

4 intsop
5 for (inti=0;i<nsi++)/f create a linked stack of vertices with
6 if (count |) == 0) { count [i | = top; top = i3} /f no predecessors

T Aor(i=05i<n;iv4)

8 if (top == - 1) { cout << " petwork has a cyele” << endl; return;}
9 else {
10 int j = 10p; 1op = count [top |5 // unstack a vertex
i cout << j << endl;
12 Listhterator<int> li (HeadNodes [|);
13 if (! /i NotNull (}) continue;
14 itk =i First ()3
15 while (1) { // decrease the count of the successor vertices of j
16 count [k |-
17 if (count (k) == 0) { counr [k | = 1op; top = 3}/ add vertex & 10 stack
18 if (/i NextNotNwll (0) k = *li.Next (3; 1 k is a successor of
19 clse break;
20 }
21 } # end of else
224

Program 6.12: Topological order

· maintain the list of vertices with zero count as a stack

· the stack is linked through the count field of the head nodes

6.5.2 Activity-On-Edge (AOE) Networks

· vertices in AOE represent events

· events signal the completion of certain activities(represented by edges)

[image: image17.png]Zag =

(a) Activity network of a hypothetical project

interpretation
start of project

completion of activity a,
completion of activities a4 and a
completion of activities ag and aqy
completion of project

(b) Interpretation of some of the events in the network of (a)

Figure 6.38: An AOE network

· critical path

· a path of longest length from the start vertex to the finish vertex

· the earliest time that an event i can occur

· the length of the longest path from the start vertex 0 to the vertex i

· ee[4] = 7

· determine the earliest start time for all activities represented by edges leaving
that vertex

· e(i): the earliest start time for activity ai
· e(7) = e(8) = 7

· define the latest time, l(i), that an activity may start without increasing the duration

· e(6) = 5, l(6) = 8, e(8) = 7, l(8) = 7

· critical activities

· e(i) = l(i)

6.5.2.1 Calculation of early activity times

· ee[j] : the earliest event time for all events

· le[j]: the latest event time for all events

· activity ai is edge <k,l>

· e(i) = ee[k]

· l(i) = le[l] - duration of activity ai
--- (6.1)

· compute ee[j] and le[j] in two stages

· a forward stage

· start with ee[0] = 0

· ee[j] = max {ee[i] + duration of <i,j>}

--- (6.2)

· i = P(j) where P(j) is the set of all vertices adjacent to vertex j

· computed in topological order

· consider the network of FIG 6.38(a)
[image: image18.png]Zag =

(a) Activity network of a hypothetical project

interpretation
start of project

completion of activity a,
completion of activities a4 and a
completion of activities ag and aqy
completion of project

(b) Interpretation of some of the events in the network of (a)

Figure 6.38: An AOE network

· the adjacency lists for the network : FIG 6.39(a)

[image: image19.png]count first

link

vertex

oo o -2 -3

(o -4 10

211 o

131t s 2 0

42 -6 9 <770

I5s] 1 -7 40,

6] 1 -8 2 0

72 -8 40

8172 0

(a) Adjacency lists for Figure 6.38(a)

' e [0/ O B P2 B)| 4151 st 7
initial 00 0 0o 0o 0 0 o0
outpu® 0 6 4 5 0 0 0 0
output} . 06 4 5 0 7 0 0
outputs 06 4 5 0 7 0 1
ouput2 = 0 6 4 5 5 7 0 1
fouwputl 0 6 4 5 7 7 0 11
fouputd 0 6 4 5 7 7 16 14
owput? 0 6 4 5 7 7 16 14
owput6 0 6 4 5 7 7 16 14
output § !

(b) Computation of ee

Figure 6.39: Computing e using modified TopologicalOrder (Program 6.12)

· ee[4] = max{ee[1]+dur<1,4>} = 6+1=7

6.5.2.2 Calculation of late activity times

· the backward stage

· start with le[n-1] = ee[n-1]

· le[j] = min{le[i] - duration of <j, i>}

--- (6.3}

i = S(j) where S(j) is the set of vertices adjacent from vertex j

· compute the latest event time by using inverse adjacency lists

[image: image20.png]initial

output 8 |
i output 7 !
output 5

output 3
output 6
output 4

| output 2

! output |

I
8
18
18
8
18
18

6

6

18
18
18
18
18
18
6
6
6

(b) Computation of fe

131141
1R 18
18 18
18 7
8 7
8 7
8 7
8 7
8 7
8 7

NE)

8
18
10
10
10
10
10
10
10

(61
18
16
16
16
16
16
16
16

(a) Inverse adjacency lists for Figure 6.38(a)

T

7
18
14
14
14
14
14
14
14

18
18
18

18

18
18
8

18 i

18

ck
18]
[7.6]
[5.6]
[3.6]
[6] |
(4 1
(2.1]
111

101

Figure 6.40: Compuling /e for the AOE network of Figure 6.38(x) (continued on next

page)

[image: image21.png]le|8] =ee]8] = 18

{e]6) = min{le|8] -2} = 16

fe]7) =min{/e|8] -4} =

le4] = min{le]6]1-9.le[71 -7} =7
le[l]=mm{lej4] -1} =6

le[2] = min{le [4} - 1) :6

e [5] =min{le[7]-4) =

te [3] = min{le [5] - 2) ~8

le 0] = min{le [11-6,le(2] -4, i |3] -5} =0

{¢) Computation of /e using a reverse topological order

Figure 6.40: Computing f¢ for the AOE network of Figure 6.38(a)

[image: image22.png]early time late time

activity e !
@ 0 0
s 0 2
H ay 0 3
ioas 6 6
as | 4 16
ag || 5 8
ay 7 7
ay " 7 7
ay 7 10
ap 16 16
ay 14 14

slack

WO C WO WD

c o

NE

It

eritical

—e =0
Yes
No
No
Yes
No
No

Figure 6.41: Early. late, and criticality values

본 강의 자료의 그림 및 알고리즘 발췌
저자 : HOROWITZ

타이틀 : FUNDAMENTALS OF DATA STRUCTURES IN C++ 2nd Edition (2006)

공저 : SAHNI, MEHTA

 출판사 : Silicon Press

v

S

u

x

y

v

S

u

w

Dist[w]

v

j

u

Distk-1[j]

Length[j][u]

k

l

x

y

t

i

j

P(j) = {x,y,t}

x

y

z

i

j

S(J) = {x,y,z}

