6.4 Shortest paths and transitive closure

· Is there a path from A to B?

· which is the shortest path from A to B ?

6.4.1 Single source/All destinations : Nonnegative edges costs

· given a directed graph G = (V, E), a length function length(i, j), length(i,j) >= 0

· to determine a shortest path from v to each of the remaining vertices of G
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Figure 6.25: Graph and shortest paths from vertex 0 (o all destinations




· let S be the set of vertices to which the shortest paths have already been found

· v: the source vertex

· let dist[w] be the length of the shortest path from v, going through only the vertices that are in S, and ending at w

· w not in S

· a greedy algorithm generates the shortest paths in nondecreasing order of path length

· 1) if the next shortest path is from v to u,        then the path goes through only vertices that are in S

· 2) the destination of the next path generated

· the vertex u that has the minimum distance, dist[u], among all vertices not in S


· 3) the length of the shortest path from v to w (the vertex w not in S)

· dist[w] or dist[u] + length(<u,w>) due to a shorter path starting at v going to u and then to w

· the algorithm ShortestPath given by Edsger Dijkstra

· represent the set S by the array s[i], s[i] = TRUE if vertex i is in S

· represent the graph by length-adjacency matrix, length[i][j]

[image: image2.png]| void Graph::ShortestPath(const int n, const int v)
2/ dist{j], 0 < j <n.is set 1o the lengih ol the shortest path from vertex v to vertex j
3/ in a digraph G with n vertices and edge lengths given by length [i 1]

4
5 for (int i =05 i < n3 i++) {s1{] = FALSE; dist [ ] = fength [v1[i 15} / initialize
6 slv]=TRUE;

7 dist|v]=0;

8 for (i =057 < n =25 i++) { // determine n—1 paths from vertex v

9 int « = choose (n); // choose retumns a value u such that:

10 H dist [u] = minimum dist fw . where s [w] = FALSE
n s[u]=TRUE;

12 for (int w = 05 w < nj wa+)

13 ity w])

14 if (ddist (1] + fengih [ ]|w | < dist |w )

15 dist [w ] =dist [u] + length [u]]w |5

16 }/endof for (i=0: ...)

17}

Program 6.8: Dclermining the shortest paths
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Figure 6.26: Digraph for Example 6.5
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Figure 6.27: Action of ShortestPath on digraph of Figure 6.26




· dist[6] = ( -> 1150

· dist[6] = min(<4,6>, <4,5><5,6>)

6.4.2 Single source/all destinations: general weights

· consider some edge with negative length
· the function ShortestPath does not give the correct results. Why?
· consider the graph of FIg 6.28 by using the shortestPath(Program 6.8) 

· the ShortestPath terminates with dist[2] = 5, dist[1] = 7

· the shortest path from 0 to 2 is 0,1,2

[image: image5.png]Figure 6.28: Directed graph with a negative-length edge




· require that the graph have no cycles of negative length

· ensure that shortest paths consist of a finite number of edges
· a shortest path between any two vertics of an n-vertex graph has at most n-1 edges

· S = {0} -> {0,1} -> {0,1,2}
[image: image6.png]Figure 6.29: Directed graph with a cycle of negative length




· the length of the shortest path from 0 to 2: - (
· let distl[u] be the length of a shortest path from the source v to u under the constraint that the shortest path contains at most l edges

· dist1[u] = length[v][u]

· if the shortest path from v to u with at most k edges has no more than k-1 edges, then distk[u] = distk-1[u]

· 2) if the shortest path from v to u with at most k edges has exactly k edges, 
    then a shortest path from v to j followed by the edge <j, u>

· the path from v to j has k-1 edges, and its length is distk-1[j]

· find i that minimizes distk-1[i] + length[i][u]

· distk[u] = min{distk-1[u], min{distk-1[i] + length[i][u]}}
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Figure 6.30: Shortest paths with negative edge lengths




· dist2[2]=min{dist1[2], min{dist1[I]+length[I][2]}}  , dist1[3]+length[3][2] = 5-2 = 3

[image: image8.png]1 void Graph::BellmanFord(const int n. const int )

2 // Single source all destination shortest paths with ncgative edge lengths
3

4 Aor(inti=0;i<nyi++) dist[i | = length [v [ |; # initialize dist

5 for (int 2k <=n-1; k++)

6 for (each « such that » '= v and u has at least one incoming edge)

7 for (each <i. u> in the graph)
8

9

if (dist | > dist [i ]+ length [i ue |) dist | ] = dist [i ] + length [ 1u |3
}

Program 6.9: Bellman and Ford algorithm to compute shortest paths




· line 6-8

· ((n2) if adjacency matrices are used

· ((e) if adjacency lists are used

· line 5-8

· ((n3) if adjacency matrices are used

· ((n.e) if adjacency lists are used

6.4.3 All-pairs shortest paths
· find the shortest paths between all pairs of vertices u and v

· solved as n independent single-source/all-destinations problems using each of the n vertices of G as a source vertex

· time complexity: O(n4)

· define A[i][j] to be the length of the shortest path from i to j going through no intermediate vertex of index greater than k
· A-1[i][j] = length[i][j], the i-to-j paths can have no intermediate vertices on them

· 1) the shortest path from i to j going through no vertex with index greater than k does not go through the vertex with index k

· Ak[i][j] = Ak-1[i][j]

· 2) the shortest path goes through vertex k

· the shortest path : a subpath from i to k + another one from k to j

· Ak[i][j] = Ak-1[i][k] + Ak-1[k][j]

· Ak[i][j] = min{Ak-1[i][j], Ak-1[i][k] + Ak-1[k][j]}

· 
A-1[i][j] = length[i][j]
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Higure 6.31: Example for all-pairs shortest-paths problem




· A0[2][1] = min{A-1[2][1], A-1[2][0] + A-1[0][1]} = min{(, 3 + 4} = 7 
[image: image10.png]1 void Graph::AllLengths(const int 1)
241 length | J|n | is the adjacency matrix of a graph with # vertices.
3/7ali11j1is the length of the shortest path between 7 and

4t

5 Aor(inti=0;i<ni++)

6 for (int j = 0; j < n; j++)

7 ali)ij)=tlength|i|1j1; # copy length into a

8 for(intk =05k <njk++) //fora path with highest vertex index 4

9 for (i =037 <ns i++) // for all possible pairs of vertices

10 for (int j =05 j <n; j++)

I ik +alkljD<alilliDelillil=alillk]+alk 1]

12}

Program 6.10: Ali-pairs shortest paths




6.4.4 Transitive closure

· consider a graph G with unweighted edges

· determine if there is a path from i to j for all values of i and j

· the transitive closure matrix, A+ [i][j] = 1 if there is a path of length > 0 from i to j

· require positive path lengths
· transitive closure
· use the function AllLengths (Program 6.10) to compute A+ 

· A+[i][j] = 1 iff a[i][j] < + (
· the reflexive transitive closure matrix, A*[i][j] = 1 if there is a path of length >= 0 from i to j 

· require nonnegative path lengths

· obtained from A+  by setting all diagonal elements to 1
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Figure 6.32: Graph G and its adjacency matrix A, A", and A*




6.5 Activity networks
6.5.1 AOV(Activity-On-Vertex) networks
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Figure 6.35: An activity-on-vertex (AOV) network




· AOV(activity-on-vertex) network

· the vertices represent tasks or activities

· the edges represent precedence relations between tasks

· vertex i in AOV network G is a predecessor of vertex j iff there is a directed path from i to j

· i is an immediate predecessor of j   iff <i,j> is an edge in G

· a precedence relation that is both transitive and irreflexive is a partial order

· determine whether or not the precedence relation defined by its edges is 
irreflexive

· determine whether or not the network contains any directed cycle

· test an AOV network for feasibility

· generate a linear ordering, v0, v1, ..., vn-1

· if vertex i is a predecessor of j in the network, then i precedes j in the linear ordering

· called a topological ordering

· the algorithm to sort the tasks into topological order

· list a vertex in the network that has no predecessor
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Figure 6.36: Action of Program 6.11 on an AOV network (shaded vertices represent
candidates for deletion)




[image: image14.png]Input the AOV network. Let n be the number of vertices.
for (int / = 03 i < n; i++) // output the vertices
{
if (every vertex has « predecessor) return; // network has a cycle and is infeasible.
pick a vertex v (that has no predecessors:
cout << vy
delete v and all edges leading out of v from the networks;

}

[EIE N

NS

Program 6.11: Design of a topological sorting algorithm




· need to specify the data representation for the AOV network

· two requirement functions

· 1) decide whether a vertex has any predecessors

· need to maintain a count of the number of immediate predecessors

· 2) delete a vertex together with all its incident edges

· need to represent the network by its adjacency lists

· the deletion of all edges leading out of vertex v

· decreasing the predecessor count of all vertices on its adjacency list
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Figure 6.37: Internal representation used by topological sorting algorithm




[image: image16.png]1 void Graph:: TopologicalOrder ()
24/ The n vertices of a network are listed in topological order
H

4 intsop
5 for (inti=0;i<nsi++)/f create a linked stack of vertices with
6 if (count | ) == 0) { count [i | = top; top = i3} /f no predecessors

T Aor(i=05i<n;iv4)

8 if (top == - 1) { cout << " petwork has a cyele” << endl; return;}
9 else {
10 int j = 10p; 1op = count [top |5 // unstack a vertex
i cout << j << endl;
12 Listhterator<int> li (HeadNodes [ |);
13 if (! /i NotNull (}) continue;
14 itk =i First ()3
15 while (1) { // decrease the count of the successor vertices of j
16 count [k |-
17 if (count (k) == 0) { counr [k | = 1op; top = 3}/ add vertex & 10 stack
18 if (/i NextNotNwll (0) k = *li.Next (3; 1 k is a successor of
19 clse break;
20 }
21 } # end of else
224

Program 6.12: Topological order




· maintain the list of vertices with zero count as a stack

· the stack is linked through the count field of the head nodes

6.5.2 Activity-On-Edge (AOE) Networks

· vertices in AOE represent events

· events signal the completion of certain activities(represented by edges)
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Figure 6.38: An AOE network




· critical path

· a path of longest length from the start vertex to the finish vertex

· the earliest time that an event i can occur

· the length of the longest path from the start vertex 0 to the vertex i

· ee[4] = 7

· determine the earliest start time for all activities represented by edges leaving 
that vertex

· e(i): the earliest start time for activity ai
· e(7) = e(8) = 7

· define the latest time, l(i), that an activity may start without increasing the duration

· e(6) = 5, l(6) = 8, e(8) = 7, l(8) = 7

· critical activities

· e(i) = l(i)

6.5.2.1 Calculation of early activity times

· ee[j] : the earliest event time for all events

· le[j]: the latest event time for all events

· activity ai is edge <k,l>

· e(i) = ee[k]

· l(i) = le[l] - duration of activity ai
--- (6.1)


· compute ee[j] and le[j] in two stages

· a forward stage

· start with ee[0] = 0

· ee[j] = max {ee[i] + duration of <i,j>}

--- (6.2)

· i = P(j) where P(j) is the set of all vertices adjacent to vertex j

· computed in topological order

· consider the network of FIG 6.38(a)
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· the adjacency lists for the network : FIG 6.39(a)
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Figure 6.39: Computing e using modified TopologicalOrder (Program 6.12)




· ee[4] = max{ee[1]+dur<1,4>} = 6+1=7

6.5.2.2 Calculation of late activity times

· the backward stage

· start with le[n-1] = ee[n-1]

· le[j] = min{le[i] - duration of <j, i>}

--- (6.3}

i = S(j) where S(j) is the set of vertices adjacent from vertex j


· compute the latest event time by using inverse adjacency lists
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Figure 6.40: Compuling /e for the AOE network of Figure 6.38(x) (continued on next

page)
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Figure 6.41: Early. late, and criticality values
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