Daniel C. Harris

Exploring Chemical Analysis Fourth Edition

Chapter 20: Atomic Spectroscopy

Copyright © 2005 by W. H. Freeman & Company

20-1 원자 분광법이란 무엇인가?

원자 분광법 (atomic spectroscopy)
 - 액체 → 시료 흡입 (aspiration) → 불꽃 → 원자화

원자 흡수 분광법 (atomic absorption spectroscopy, AAS) - 광원 → 불꽃 속 원자가 빛 흡수 → 검출기 - Beer 법칙 : A = -log(P/P₀) = εbc

그림 20-2. 불꽃 속의 원자에 의한 빛의 흡수 및 방출. 원자 흡수에서 원자들은 광원으로부터 빛을 흡수하고 흡수되지 않은 빛이 검출기에 도달한다.

원자 방출 분광법 (atomic emission spectroscopy, AES) - 바닥 상태의 불꽃 속 원자 → 들뜬 상태의 불 꽃 속 원자 → 바닥 상태의 불꽃 속 원자 + hv - 방출 빛의 세기 ∝시료의 농도 - 광원 필요 ?

그림 20-2. 불꽃 속의 원자에 의한 빛의 흡수 및 방출. 원자 방출에서 는 불꽃 속에 있는 들뜬 원자에 의해 빛이 방출된다.

• 원자 스펙트럼

- 너비 : 10⁻³~10⁻² nm, 매우 예민한 선
(분자 스펙트럼 : ~100 nm)
- 다른 원소에 의한 피크의 겹침 무시 가능
- 70개 이상의 원소 동시 분석 가능

• Na 원자 - 3s ↔ 3p : 590 nm - 3s ↔ 4p : 330 nm

20-2 원자화 : 불꽃, 노 및 플라스마

- 원자화 (atomization)
 분석물질을 기체 원자로 분해시키는 과정
 불꽃 (flame) : AAS, AES
 흑연노 (graphite furnace) : AAS, AES
 유도결합 플라스마 (inductively coupled plasma, ICP) : AES
 - ICP-MS : 플라스마 원자화 + 질량분석계 검출

• 불꽃 (flame)

• 사전혼합버너 (premix burner)

- 시료, <u>산화제</u>, 연료를 미 리 혼합 - 산화제가 시료를 aspiration → 분무기 (nebulizer) → 유리구슬 → 미세한 안개방울 → 차폐장치(큰 방울 차단) → 불꽃

- 시료의 5% 정도만 불꽃, 나머지는 배수관 (drain)

그림 20-4. 기압식 분무기가 설치 된 사전 혼합 버너. 일반적으로 버 너 머리에 있는 구멍의 길이는 10 cm이고 너비는 약 0.5 mm이다.

• 불꽃 속의 시료

- -용매:증발
- 시료 : 기화, 원자화
- 금속 산화물/수산화물 : 시료에 의한 신호 감소
- 과잉불꽃 (rich flame) : 연료가 많은 불꽃
 - 산화물/수산화물 : 금속으로 환원 → 감도 증가
- 부족불꽃 (lean flame) : 산화제가 과량
 - 불꽃의 온도 증가
 - 뜨거운 불꽃이 필요한 경우

Lean burn

TABLE 20-1Maximum flame temperatures

Fuel	Oxidant	Temperature (K)
Acetylene	Air	2 400-2 700
Acetylene	Nitrous oxide	2 900-3 100
Acetylene	Oxygen	3 300-3 400
Hydrogen	Air	2 300-2 400
Hydrogen	Oxygen	2 800-3 000
Cyanogen	Oxygen	4 800

아세틸렌-산화이질소

내화성 원소용, 2900 K~3100 K

아세틸렌-공기

가장 일반적, 2400 K~2700 K

• 노 (furnace)

그림 20-5. 원자 분광법에서 전기 가열 흑연노. 시료는 노 위쪽에 있는 주 입구로 주입되고 빛은 노의 한쪽 끝에서 다른 쪽 끝으로 통과한다. 속에 설치된 L'vov 시료대는 천천히 가열된 바깥 노벽으로부터의 복사에 의해 균일하게 가열된다.

L'vov Graphite Platform

The L'vov platform is a small plate of solid pyrolytic graphite that's inserted into the graphite tube.

흑연노 (graphite furnace) 높은 감도 : 빛의 경로에 원자들이 밀집 소량의 시료 : 1~100 uL 낮은 재현성 · 시료 주입이 수동

• 자동 주입 시 재현성 향상

• Tube 벽에 시료 주입 시 재현성 감소

Graphite furnace 가열 단계 건조:용매제거 탄화:유기물 분해 원자화

매트릭스 변형제 (matrix modifier) -메트릭스에 의한 방해 감소 -바닷물 속의 망간 분석

바닷물 중 NaCl의 가열로 생 성된 연기에 의한 빛의 산란

NaCl + NH₄NO₃ → NaNO₃ + NH₄Cl 깨끗하게 증발, 매트릭스 신호감소

유도결합 플라스마 : ICP – 테슬라 코일의 스파크 → Ar의 이온화 (Ar⁺ + e⁻) → 자기장에 의한 가속 → 충돌로 인한 가 열 (6,000 K~10,000 K)

그림 20-7. 분광 분석법에 이용되고 있는 전형적인 온 도 분포 프로필

• 초음파 분무기 : 검출한계 개선

그림 20-8. 원자 분광법에서 대부분 원소들의 검출 한계를 한자리 크기 로 낮추는 초음파 분무기의 그림. 시료를 진동하는 결정을 향하여 분무시 키면 안개방울이 생성된다.

nebulizer

TABLE 20-2Comparison of detection limits
for Ni⁺ ion at 231 nm

	Detection limits for
Technique	different instruments (ng/mL)
Inductively coupled plasma-atomic	3–50
emission (pneumatic nebulizer)	
Inductively coupled plasma-atomic	0.3–4
emission (ultrasonic nebulizer)	
Graphite furnace-atomic absorption	0.02-0.06
Inductively coupled plasma-mass	0.001-0.2
spectrometry	

SOURCE: J.-M. Mermet and E. Poussel, Appl. Spectros. 1995, 49, 12A.

20-3 원자 분광법에서 온도의 영향

• Boltzmann 분포 - 열적 평형에서 두 가지 다른 상태에 있는 입자 의 상대적인 수

orption ission	 Ε*, g *	^r = 3, excited states
Abs(Em	 $-\mathbf{E}_0, \mathbf{g}_0$	= 2, ground states

 $\frac{N^*}{N_0} = \left(\frac{g}{g_0}\right)e^{-z}$

- N*/N₀ : 두 에너지 준위의 상대적인 입자수
- g*, g₀: 축퇴도 (각 에너지 준위에서 가능한 에너지 준위의 상태 수)
- k : Boltzmann 상수, 1.381×10⁻²³ J/K

10 K 증가
- 들뜬 원자수 : 4% 증가
- 바닥상태 원자수 : 거의 변화 없음

- at 2600 K, N*/N₀ = 0.000 167 - at 2610 K, N*/N₀ = 0.000 174

Na, $\Delta E=3.371 \times 10^{-19}$ J, $g_0=1$, $g^*=2$

• 들뜬 상태의 원자수에 미치는 온도의 영향

• Na 원자, 2500 K → 2510 K

	2500 K	2510 K	10 K 증가
N _j /N ₀	1.72×10 ⁻⁴	1.79×10-4	0.07×10 ⁻⁴ 증가
Nj	0.017197%	0.017896%	4% 증가
N ₀	99.982803%	99.982104%	6.99×10 ⁻⁴ % 감소

 · 흡수 및 방출에 미치는 온도의 영향
 - 10 K 증가 : 들뜬 상태의 입자수는 4% 증가 → 방출의 세기 4% 증가
 - 방출 분광법 : 온도 변화에 민감

Effect of energy separation and temperature on population of excited states

Excited-state fraction $(N^*/N_0)^a$

Wavelength separation of states (nm)	Energy separation of states (J)	2 500 K	6 000 K
250	$7.95 imes 10^{-19}$	1.0×10^{-10}	6.8×10^{-5}
500	3.97×10^{-19}	1.0×10^{-5}	8.3×10^{-3}
750	2.65×10^{-19}	4.6×10^{-4}	4.1×10^{-2}

a. Based on the equation $N^*/N_0 = (g^*/g_0)e^{-\Delta E/kT}$ in which $g^* = g_0 = 1$.

TABLE 20-3

ICP - 주로 방출법에 이용 - 높은 온도 → N* 증가 → 방출 세기 증가 - 광원이 불 필요

• 선너비 문제 - Beer 법칙 : 광원의 선너비<원자 증기의 선너비

선너비가 넓어지는 이유 : 도플러 효과
- 광원을 향해 움직이는 원자 : 진동수 증가
- 광원에서 멀어지는 원자 : 진동수 감소
- 진동수 분포로 선너비 증가

그림 20-11 Doppler 효과. 광원을 향해 움직이는 분자는 광원으로부터 멀어져 가는 분자보다 진동하는 전자기파를 자 주 감지하게 된다.

도플러 효과

 선너비가 넓어지는 이유 : 압력 폭넓어지기
 - 충돌하는 원자 : 에너지 교환, 다양한 진동수
 - 농도 증가 → 압력 증가 → 압력 폭 넓어지기 증 가

속빈 음극램프 (hollow cathode lamp) – 높은 전압 → 기체의 이온화 → 양이온이 음극 에 충돌 → 음극 물질의 들뜸 → 바닥 상태로 내려오면서 특정 파장의 빛 방출 – 음극 물질은 시료와 같은 원소 – 방출 빛의 파장 = 시료의 흡수 파장

• 원자 흡수에 필요한 좁은 선너비와 파장

<u>그림 20-13</u>. 속빈 음극 램 <u>프의 방출, 원자 흡수 및</u> 단색화장치의 상대적인 서 너비. 속빈 음극 램프의 선 너비는 산대적으로 좁다. 왜냐하면 램프속의 기체 온도가 불꽃 온도보다 낮 을 뿐만 아니라 (Doppler 폭 넓어지기 감소) 램프 속 의 압력이 불꽃 압력 보다 <u>낮기 때문이다 (압력 폭</u>넓 어지기 감소).

바탕보정 (background correction) - 바탕선 : 흡광도 = ~0.3 - 시료에 의한 흡수를 구분

• Zeeman 보정

- Zeeman 효과 : 원자 증기에 자기장을 가하면 원자의 에너지 준위가 분리되어 여러 개의 흡 수선이 발생
- 자기장 on : 에너지 준위 분리 → 시료에 의한 흡수 감소 → matrix에 의한 흡수는 유지
 - 자기장 off : 시료 + matrix에 의한 흡수
- 차이 = 시료에 의한 흡수 (바탕보정)

Zeeman 효과에 의한 바탕보정 - 원자증기 + 센 자기장 : 에너지 준위의 분리

그림 20-15. 원자 흡수 분광법에서 Zeeman 바탕 보정의 원리. 자기장 을 걸어주지 않을 경우 분석물질과 바탕 흡광도의 합이 측정된다. 자기 장을 걸어줄 경우 분석물질의 흡광도는 속빈 음극 램프의 방출 파장으 로부터 이동되므로 흡광도는 단지 바탕에 의한 것이 된다.

• ICP에 의한 다원소 동시 분석

천연색 사진 21. 모든 원소를 <u>하나의 검출기로 사용하는</u> ICP 원자 방출 분광기의 다색 화장치. 플라스마에서 시료의 방출에 의한 빛은 오른 쪽 위 - 다색화 장치로 들어가며 프리즘에 의해서 수직적으로 분산되며 다시 회절에 의해서 수평적으로 분산된다. 파장이 165 nm 에서 1000 nm 까지 의 이차원적 패턴의 결과가 262000 픽셀을 가진 CCD 검 출기에 의해 검출된다. 모든 원소는 동시에 검출된다.

• 불꽃, 노, ICP, ICP-MS 비교 - 451 쪽

20-5 방해

• 방해 (interference) - 분석물의 농도가 일정한 상태에서 신호를 변 화시키는 효과 - 보정 : 방해 요인의 제거, 동일한 방해 영향을 나타내는 표준물질의 제조 • 방해의 종류 -스펙트럼 방해 - 화학적 방해 - 이온화 방해

스펙트럼 방해 -분석물질의 신호가 다른 화학종/불꽃에 의한 신호와 겹칠 때 -불꽃에 의한 신호 : 바탕보정으로 제거

- 다른 화학종에 의한 신호 : 다른 파장을 선택
- 화학적 방해
 - 분석물질의 원자화가 감소
 - SO₄²⁻, PO₄³⁻ : Ca²⁺의 원자화 방해

- 화학적 방해효과 제거
 - 높은 온도의 불꽃 사용 : 휘발성이 작은 화학종
 의 생성에 의한 방해 제거
 - 해방제 (releasing agent) : <mark>방해물질과 우선적 으로 반응</mark>하여 방해물질이 분석물과 반응하는 것을 막을 수 있는 양이온
 - 스트론튬, 란탄 : 칼슘을 정량할 때 인산이온의 방해 제거, 마그네슘을 정량할 때 알루미늄의 방해 제거

- 보호제 (protective agent) : 분석물과 반응하 여 안정하고 휘발성이 있는 화학종을 형성

- EDTA : 칼슘을 정량할 때 알루미늄, 규소, 인산이온, 황산이온의 방해를 막기위해 사용
- 8-hydroxyquinoline : 칼슘과 마그네슘을 정량할 때 알루미늄의 방해를 억제

이온화 방해 - 이온화 에너지가 낮은 알칼리 금속의 경우

$$M(g) = M^{+}_{(g)} + e^{-}_{(g)}$$
 $K = \frac{[M^{+}][e^{-}]}{[M(g)]}$

– 이온화 정도 : Na (5%), K (33%)
– 이온화 된 원자의 에너지 준위 ≠ 중성 원자의 에너지 준위 → 신호의 감소

이온화 억제제 -분석 물질의 이온화를 억제 -이온화가 더 잘 되는 원소를 선택

기기 9-17. 스트론튬의 검정선에 미치는 포타 슘 농도의 영향

표준물 첨가법

ICP의 장점 - 고온/ 긴 체류 시간 : 원자화 증가 → 신호 증 가 - 시료의 이온화 감소(Ar 분위기) - 산화물 형성 감소 (비활성 Ar 사용) - 자체흡수 감소 (균일한 온도 분포)

자체 흡수 : 들뜬 원자가 방출하는 복사선 을 바닥상태의 원자가 흡수

TABLE 20-4 Comparison of atomic analysis methods				
	Flame absorption	Furnace absorption	Plasma emission	Plasma–mass spectrometry
Detection limits (ng/g)	10-1 000	0.01-1	0.1–10	0.000 01-0.000 1
Linear range	10^{2}	10^{2}	10^{5}	10^{8}
Precision				
Short term (5–10 min)	0.1-1%	0.5-5%	0.1 - 2%	0.5-2%
Long term (hours)	1-10%	1-10%	1-5%	< 5%
Interferences				
Spectral	Very few	Very few	Many	Few
Chemical	Many	Very many	Very few	Some
Mass	_	_	_	Many
Sample throughput	10–15 s/ element	3-4 min/ element	6–60 elements/min	All elements in 2–5 min
Dissolved solid	0.5–5%	>20% slurries and solids	1–20%	0.1–0.4%
Sample volume	Large	Very small	Medium	Medium
Purchase cost	1	2	4–9	10–15

SOURCE: Adapted from TJA Solutions, Franklin, MA.

20-6 유도결합 플라스마-질량 분석법

플라스마에서 생성된 분석물질을 질량분
 석계로 검출

그림 20-18 ICP-MS로 측 정한 커피콩 중의 원소 프 로필 일부. 두 산지의 콩에 서 Pb 함량은 비슷하지만, 수은의 경우는 하와이산보 다 쿠바산 콩이 더 높다.

chapter summary homework

- 20장 원자분광법을 A4 용지 앞·뒷면에 정리
 앞면 맨 위에 학번,이름, 제출일, chapter 제목 표시
 이름 밑에는 객관식 문제 1개 및 정답 작성
- C (contents, 60%) + D (design, 20%) + P (problem, 10%)
- 미제출 또는 상태 불량 시 : 0점
- 11월 14일 (수), 오전 10시 까지
 과대표가 걷어서 자216호로 제출 (직접 제출 가능)

- 의 216호
- 2012년 11월 14일, 오후 1시~ 2시 15분
 18장 빛이 있어라 ~ 20장 원자 분광법
- 2차 시험