Chapter 9 Vector Differential Calculus,

 Grad, Div, Curl9.1 Vectors in 2-Space and 3-Space
9.2 Inner Product (Dot Product)
9.3 Vector Product (Cross Product, Outer Product)
9.4 Vector and Scalar Functions and Fields

Chapter 9 Vector Differential Calculus, Grad, Div, Curl

9.1 Vectors in 2-Space and 3-Space

Two kinds of quantities used in physics, engineering and so on.
$\begin{array}{ll}\text { A scalar } & \text { : A quantity representing magnitude. } \\ \text { A vector } & \text { : A quantity representing magnitude and direction. }\end{array}$

A vector is represented by an arrow.
The tail is called initial point.

The head (or the tip) is called terminal point

The distance between the initial and the terminal points is called the distance, magnitude, or norm.

A velocity is a vector, \vec{v}, and its norm is $|\vec{v}|$.

A vector of length 1 is called a unit vector.

Definition Equality of Vectors
Two vectors \vec{a} and \vec{b} are equal, $\vec{a}=\vec{b}$, if they have the same length and the same direction. A translation does not change a vector.

(C)

(D)

Fig. 164. (A) Equal vectors. (B)-(D) Different vectors

Components of a Vector

A vector \vec{a} is given with initial point $P:\left(x_{1}, y_{1}, z_{1}\right)$ and terminal point $Q:\left(x_{2}, y_{2}, z_{2}\right)$.

The vector \vec{a} has three components along x, y, and z coordinates.

$$
\vec{a}=\left[a_{1}, a_{2}, a_{3}\right]
$$

where

$$
a_{1}=x_{2}-x_{1}, \quad a_{2}=y_{2}-y_{1}, \quad a_{3}=z_{2}-z_{1}
$$

The length $|\vec{a}|$ is given by

$$
|\vec{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

Fig. 166. Components of a vector

Example 1 Components and Length of a Vector
A vector \vec{a} with initial point $P:(4,0,2)$ and terminal point $Q:(6,-1,2)$.

Its components are

$$
a_{1}=6-4 \Rightarrow 2, \quad a_{2}=-1-0 \Rightarrow-1, \quad a_{3}=2-2 \Rightarrow 0
$$

Hence $\vec{a}=[2,-1,0]$

Its length is $|\vec{a}|=\sqrt{2^{2}+(-1)^{2}+0^{2}} \Rightarrow \sqrt{5}$

- Position vector

A point A: (x, y, z) is given in Cartesian coordinate system.
The position vector of the point A is a vector drawn from the origin to the point A.
$\vec{r}=[x, y, z]$

Fig. 167. Position vector \mathbf{r} of a point $A:(x, y, z)$

Theorem 1 Vectors as Ordered Real Triple Numbers
A vector in a Cartesian coordinate system can be represented by three real numbers $\left(a_{1}, a_{2}, a_{3}\right)$, which corresponds to three components.
Hence $\vec{a}=\vec{b}$ means that $a_{1}=b_{1}, a_{2}=b_{2}$ and $a_{3}=b_{3}$.

Vector Addition, Scalar Multiplication

Definition

$$
\begin{aligned}
& \text { Addition of two vectors } \vec{a}=\left[a_{1}, a_{2}, a_{3}\right] \text { and } \vec{b}=\left[b_{1}, b_{2}, b_{3}\right] \\
& \qquad \vec{a}+\vec{b}=\left[a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right]
\end{aligned}
$$

Basic Properties of Vector Addition

$$
\begin{array}{ll}
\vec{a}+\vec{b}=\vec{b}+\vec{a} & \text { : commutative } \\
(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c}) & \text { : associative } \\
\vec{a}+0=0+\vec{a}=\vec{a} & \\
\vec{a}+(-\vec{a})=0 &
\end{array}
$$

A vector $-\vec{a}$ has the same length $|\vec{a}|$ as \vec{a} but with the opposite direction.

Fig. 170. Vector addition

Fig. 171. Commutativity of vector addition

Fig. 172. Associativity of vector addition

Definition

In scalar multiplication, a vector \vec{a} is multiplied by a scalar c.

$$
c \vec{a}=\left[c a_{1}, c a_{2}, c a_{3}\right]
$$

$c \vec{a}$ has the same direction with \vec{a} with increased length for $c>0$, " opposite direction " \quad for $c<0$

Fig. 173. Scalar multiplication

Basic Properties of Scalar Multiplication

$$
\begin{aligned}
& c(\vec{a}+\vec{b})=c \vec{a}+c \vec{b} \\
& (c+k) \vec{a}=c \vec{a}+k \vec{a} \\
& c(k \vec{a})=(c k) \vec{a}=c k \vec{a} \\
& 1 \vec{a}=\vec{a}, 0 \vec{a}=0,(-1) \vec{a}=-\vec{a} \quad \rightarrow \quad \vec{b}+(-\vec{a})=\vec{b}-\vec{a}
\end{aligned}
$$

Fig. 174. Difference of vectors

Unit Vectors $\hat{i}, \hat{j}, \hat{k}$

A vector can be represented as

$$
\vec{a}=\left[a_{1}, a_{2}, a_{3}\right]=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}
$$

using three unit vectors $\hat{i}, \hat{j}, \hat{k}$ along x, y, z axes

$$
\hat{i}=[1,0,0], \quad \hat{j}=[0,1,0], \quad \hat{k}=[0,0,1]
$$

Fig. 175. The unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ and the representation (8)

Example 2 Vector Addition. Multiplication by Scalars
Let

$$
\vec{a}=[4,0,1] \quad \text { and } \quad \vec{b}=\left[2,-5, \frac{1}{3}\right]
$$

Then

$$
\begin{aligned}
& -\vec{a}=[-4,0,-1], \\
& 7 \vec{a}=[28,0,7] \\
& \vec{a}+\vec{b}=\left[6,-5, \frac{4}{3}\right] \\
& 2(\vec{a}-\vec{b})=2\left[2,5, \frac{2}{3}\right]=2 \vec{a}-2 \vec{b}
\end{aligned}
$$

Example $3 \quad \hat{i}, \hat{j}, \hat{k}$ Notation for Vectors
The two vectors in Example 2 are

$$
\begin{aligned}
& \vec{a}=4 \hat{i}+\hat{k} \\
& \vec{b}=2 \hat{i}-5 \hat{j}+\frac{1}{3} \hat{k}
\end{aligned}
$$

9.2 Inner Product (Dot Product)

Definition

> Inner Product (Dot Product) of Vectors is defined as $$
\vec{a} \bullet \vec{b}=|\vec{a}||\vec{b}| \cos \gamma=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

```
    0\leq\gamma\leq\pi, the angle between }\vec{a}\mathrm{ and }\vec{b
```


$\mathbf{a} \cdot \mathbf{b}>0$

$\mathbf{a} \cdot \mathbf{b}=0$

$\mathbf{a} \cdot \mathbf{b}<0$

Fig. 176. Angle between vectors and value of inner product

Orthogonality

\vec{a} is orthogonal to \vec{b} if $\vec{a} \bullet \vec{b}=0$.
γ should be $\pi / 2$ when $\vec{a} \neq 0$ and $\vec{b} \neq 0$

Theorem 1 Orthogonality

$$
\vec{a} \bullet \vec{b}=0 \text { if and only if } \vec{a} \text { and } \vec{b} \text { are perpendicular to each other }
$$

Length and Angle
$|\vec{a}|=\sqrt{\vec{a} \bullet \vec{a}}$

Then

$$
\cos \gamma=\frac{\vec{a} \bullet \vec{b}}{|\vec{a}||\vec{b}|}=\frac{\vec{a} \bullet \vec{b}}{\sqrt{\vec{a} \bullet \vec{a}} \sqrt{\vec{b} \bullet \vec{b}}}
$$

Basic Properties of Inner Product

$$
\begin{array}{ll}
\left(q_{1} \vec{a}+q_{2} \vec{b}\right) \bullet \vec{c}=q_{1} \vec{a} \bullet \vec{c}+q_{2} \vec{b} \bullet \vec{c} & : \text { linearity } \\
\vec{a} \bullet \vec{b}=\vec{b} \bullet \vec{a} & \text { : symmetry } \\
\vec{a} \bullet \vec{a} \geq 0 & \text { : positive definiteness } \\
\vec{a} \bullet \vec{a}=0 \text { if and only if } \vec{a}=0 & : \text { positive definiteness } \\
(\vec{a}+\vec{b}) \bullet \vec{c}=\vec{a} \bullet \vec{c}+\vec{b} \bullet \vec{c} & \text { : distributive } \\
|\vec{a} \bullet \vec{b}| \leq|\vec{a}||\vec{b}| & \text { : Cauchy-Schwarz inequality } \\
|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}| & \text { : triangle inequality } \\
|\vec{a}+\vec{b}|^{2}+|\vec{a}-\vec{b}|^{2}=2\left(|\vec{a}|^{2}+|\vec{b}|^{2}\right) & \text { : parallelogram equality }
\end{array}
$$

Example 1 Inner Product. Angle between Vectors
Two vectors $\vec{a}=[1,2,0]$ and $\vec{b}=[3,-2,1]$ are given

$$
\begin{aligned}
& \vec{a} \bullet \vec{b}=1 \cdot 3+2 \cdot(-2)+0 \cdot 1 \Rightarrow-1 \\
& |\vec{a}|=\sqrt{\vec{a} \bullet \vec{a}} \Rightarrow \sqrt{1^{2}+2^{2}+0^{2}} \Rightarrow \sqrt{5} \\
& |\vec{b}|=\sqrt{\vec{b} \bullet \vec{b}} \Rightarrow \sqrt{3^{2}+(-2)^{2}+1^{2}} \Rightarrow \sqrt{14} \\
& \gamma=\arccos \frac{\vec{a} \bullet \vec{b}}{|\vec{a}||\vec{b}|}=\cos ^{-1} \frac{-1}{\sqrt{5} \sqrt{14}}=1.69061=96.865^{\circ}
\end{aligned}
$$

Example 2 Work Done by a Force

A constant force \vec{p} is exerted on a body.
But the body is displaced along a vector \vec{d}.

Then the work done by the force in the displacement of the body is

$$
\begin{aligned}
W=(|\vec{p}| \cos \alpha)|\vec{d}| \Rightarrow & \vec{p} \bullet \vec{d} \\
& \uparrow \\
& \text { Inner product is used nicely here. }
\end{aligned}
$$

Fig. 177. Work done by a force

Example 3 Component of a Force in a Given Direction
What force in the rope will hold the car on a 25° ramp.
The weight of the car is 5000 lb .

Since the weight points downward, it can be represented by a vector as

$$
\vec{a}=[0,-5000,0]
$$

\vec{a} can be given by a sum of two vectors

$$
\vec{a}=\vec{c}+\vec{p}
$$

Fig. 178. Example 3
$\uparrow \uparrow$ Force exerted to the rope by the car Force exerted to the ramp by the car

From the figure, $\quad|\vec{p}|=|\vec{a}| \cos \left(65^{\circ}\right) \Rightarrow 2113 \mathrm{lb}$

- A vector in the direction of the rope $\vec{b}=\left[-1, \tan 25^{\circ}, 0\right]$

The force on the rope $|\vec{p}|=\vec{a} \bullet\left(-\frac{\vec{b}}{|\vec{b}|}\right) \Rightarrow 2113 \mathrm{lb}$

- Projection (or component) of \vec{a} in the direction of \vec{b}

$$
p=|\vec{a}| \cos \gamma=\frac{\vec{a} \bullet \vec{b}}{|\vec{b}|}
$$

p is the length of the orthogonal projection of \vec{a} onto \vec{b}.

($p>0$)

($p=0$)

($p<0$)
Fig. 179. Component of a vector \mathbf{a} in the direction of a vector \mathbf{b}

Projections p of \mathbf{a} on \mathbf{b} and q of \mathbf{b} on \mathbf{a}

- Orthonormal Basis

The orthogonal unit vectors in Cartesian coordinates system form an orthonormal basis for 3-space.

$$
\begin{equation*}
\uparrow \tag{i}
\end{equation*}
$$

An arbitrary vector is given by a linear combination of the orthonormal basis.

The coefficients of a vector can be determined by the orthonormality.

$$
\begin{aligned}
\vec{v}=I_{1} \hat{i}+I_{2} \hat{j}+I_{3} \hat{k} \quad \rightarrow \quad I_{1}= & \vec{v} \bullet \hat{i}, \quad I_{2}=\vec{v} \bullet \hat{j}, \quad I_{3}=\vec{v} \bullet \hat{k} \\
& \uparrow \\
& =I_{1} \hat{i} \bullet \hat{i}+I_{2} \hat{j} \bullet \hat{i}+I_{3} \hat{k} \bullet \hat{i}
\end{aligned}
$$

Example 5 Orthogonal Straight Lines in the Plane

Find the straight line L_{1} passing through the point $P:(1,3)$ in the xy-plane and perpendicular to the straight line $L_{2}: x-2 y+2=0$

The equation of the straight line $L_{2}: \mathrm{b}_{1} x+b_{2} y=k$

$$
\uparrow
$$

$$
\vec{b} \bullet \vec{r}=k, \text { in vector form. }
$$

$$
\vec{b}=\left[b_{1}, b_{2}, 0\right], \vec{r}=[x, y, 0]
$$

Consider another straight line $\vec{b} \bullet \vec{r}=0$

Fig. 181. Example 5
\rightarrow This line passes through the origin and parallel to L_{2}
$\rightarrow \quad \vec{r}$ is the position vector from the origin to a point on L_{2}.
Since $\vec{b} \bullet \vec{r}=0, \vec{b}$ is normal to \vec{r} and to this line and to L_{2}.
The equation of a line parallel to \vec{b} is $\vec{a} \bullet \vec{r}=c$ with $\vec{a} \bullet \vec{b}=0$.
Since $\vec{b}=[1,-2,0]$ from $L_{2}, \vec{a}=[2,1,0]$
$\rightarrow L_{1}: 2 x+y=c$
L_{1} passes through $P:(1,3)$
$\rightarrow \quad 2+3=\mathrm{c} \quad \rightarrow \quad L_{1}: 2 x+y=5$

Example 6 Normal Vector to a Plane
Find a unit vector normal to the plane $4 x+2 y+4 z=-7$

Express the plane in vector form : $\vec{a} \bullet \vec{r}=c$

Using the unit vector of $\vec{a}, \quad \hat{n}=\frac{\vec{a}}{|\vec{a}|}$

```
\(\hat{n} \bullet \vec{r}=p\)
    \(\uparrow\)
        Projection of \(\vec{r}\) onto \(\hat{n}\)
                                : \(p=c /|\vec{a}|\), a constant.
```


Fig. 182. Normal vector to a plane

A position vector \vec{r} is from the origin to a point on the plane.
The same projection p for any $\vec{r} \quad \rightarrow \quad \hat{n}$ should be a surface normal.

Since $\vec{a}=[4,2,4]$ is given, the surface normal is obtained as $\hat{n}=\frac{\vec{a}}{|\vec{a}|} \Rightarrow \frac{1}{6} \vec{a}$

9.3 Vector Product (Cross Product, Outer Product)

Definition

The vector product of \vec{a} and \vec{b} is defined as

$$
\vec{v}=\vec{a} \times \vec{b}
$$

: another vector

Its magnitude

$$
|\vec{v}|=|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \gamma \quad: \gamma, \text { angle between } \vec{a} \text { and } \vec{b}
$$

Its direction is perpendicular to both \vec{a} and \vec{b} conforming to right-handed triple(or screw).

Fig. 184. Right-handed triple of vectors $\mathbf{a}, \mathbf{b}, \mathbf{v}$

Fig. 185. Right-handed screw

Note that $|\vec{a} \times \vec{b}|$ represents the area of the parallelogram formed by \vec{a} and \vec{b}.

Fig. 183. Vector product

- In components

$$
\vec{a} \times \vec{b}=\left[a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right]
$$

$$
\begin{aligned}
& \vec{v}=\vec{a} \times \vec{b} \text { can be calculated as follows } \\
& \qquad \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \Rightarrow \hat{i}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\hat{j}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\hat{k}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|
\end{aligned}
$$

Example 1 Vector Product

$$
\vec{a}=[1,1,0], \quad \vec{b}=[3,0,0]
$$

The vector product

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 0 \\
3 & 0 & 0
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
1 & 1 \\
3 & 0
\end{array}\right| \mathbf{k}=-3 \mathbf{k}=[0,0,-3]
$$

Example 2 Vector Products of the Standard Basis Vectors

$$
\begin{array}{lll}
\mathbf{i} \times \mathbf{j}=\mathbf{k}, & \mathbf{j} \times \mathbf{k}=\mathbf{i}, & \mathbf{k} \times \mathbf{i}=\mathbf{j} \\
\mathbf{j} \times \mathbf{i}=-\mathbf{k}, & \mathbf{k} \times \mathbf{j}=-\mathbf{i}, & \mathbf{i} \times \mathbf{k}=-\mathbf{j} .
\end{array}
$$

Theorem 1 General Properties of Vector Products

$$
\begin{array}{ll}
(k \vec{a}) \times \vec{b}=k(\vec{a} \times \vec{b})=\vec{a} \times k \vec{b} & : \text { for every scalar } k \\
\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c}) & : \text { distributive } \\
(\vec{a}+\vec{b}) \times \vec{c}=(\vec{a} \times \vec{c})+(\vec{b} \times \vec{c}) & : \text { distributive } \\
\vec{b} \times \vec{a}=-(\vec{a} \times \vec{b}) & : \text { anticommutative } \\
\vec{a} \times(\vec{b} \times \vec{c}) \neq(\vec{a} \times \vec{b}) \times \vec{c} & : \text { not associative }
\end{array}
$$

Fig. 187.
Anticommutativity

Fig. 188. Moment of a force \mathbf{p}

A force \vec{p} is exerted on a point A.
Point Q and point A is connected by a vector \vec{r}.

The moment m about a point Q is defined as $m=|\vec{p}| d$,
where d is the perpendicular distance from Q to L.
$\rightarrow \quad m=|\vec{p}||\vec{r}| \sin \gamma$

In vector form

$$
\vec{m}=\vec{r} \times \vec{p} \quad: \text { Moment vector }
$$

Example 5 Velocity of a Rotating Body

Fig. 190. Rotation of a rigid body

A vector \vec{w} can describe a rotation of a rigid body.
\rightarrow Its direction \square the rotation axis (right-hand rule)
Its magnitude = angular speed ω (radian $/ \mathrm{sec}$)

The linear speed at a point P
$\rightarrow \quad v=\omega d \Rightarrow|\vec{w}||\vec{r}| \sin \gamma \Rightarrow|\vec{w} \times \vec{r}|$

In vector form
$\vec{v}=\vec{w} \times \vec{r}$

Scalar Triple Product

The scalar triple product is defined as

$$
(\vec{a} \vec{b} \vec{c})=\vec{a} \bullet(\vec{b} \times \vec{c})
$$

It can be calculated as

$$
\vec{a} \bullet(\vec{b} \times \vec{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Theorem 2 Properties and Applications of Scalar Triple Products
(a) The dot and cross can be interchanged

$$
\vec{a} \bullet(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \bullet \vec{c}
$$

(b) Its absolute value is the volume of the parallelepiped formed by \vec{a}, \vec{b} and \vec{c}.
(c) Any three vectors are linearly independent if and only if their scalar tipple product is nonzero.

Proof:
(a) It can be proved by direct calculations
(b) $|\vec{a} \bullet(\vec{b} \times \vec{c})|=|\vec{a}||\vec{b} \times \vec{c}||\cos \beta| \Rightarrow(|\vec{a}||\cos \beta|)|\vec{b} \times \vec{c}|$
$\uparrow \quad \uparrow$ area of the base height of the parallelepiped
(c) If three vectors are in the same plane or on the same straight line,
 either the dot or cross product becomes zero in $\vec{a} \bullet(\vec{b} \times \vec{c})$.

$$
\begin{aligned}
& \vec{a} \bullet(\vec{b} \times \vec{c}) \neq 0 \quad \rightarrow \quad \text { Three vectors NOT in the same plane or on the same straight line. } \\
& \text { They are linearly independent. }
\end{aligned}
$$

Example 6 Tetrahedron

A tetrahedron is formed by three edge vectors,

$$
\vec{a}=[2,0,3], \quad \vec{b}=[0,4,1], \quad \vec{c}=[5,6,0]
$$

Find its volume.

Fig. 192.
Tetrahedron

First, find the volume of the parallelepiped using scalar triple product.

$$
\left(\begin{array}{lll}
\mathbf{a} & \mathbf{b} & \mathbf{c}
\end{array}\right)=\left|\begin{array}{lll}
2 & 0 & 3 \\
0 & 4 & 1 \\
5 & 6 & 0
\end{array}\right|=2\left|\begin{array}{ll}
4 & 1 \\
6 & 0
\end{array}\right|+3\left|\begin{array}{ll}
0 & 4 \\
5 & 6
\end{array}\right|=-12-60=-72
$$

The volume of tetrahedron is $1 / 6$ of that of parallelepiped.
Therefore, the answer is 12.

9.4 Vector and Scalar Functions and Fields.

A vector function gives a vector value for a point p in space

$$
\vec{v}=\vec{v}(p)=\left[v_{1}(p), v_{2}(p), v_{3}(p)\right] \quad \xrightarrow{\text { in Cartesian coord. }} \vec{v}(x, y, z)=\left[v_{1}(x, y, z), v_{2}(x, y, z), v_{3}(x, y, z)\right]
$$

A scalar function gives scalar values : $f=f(p)$

A vector function defines a vector field.
A scalar function defines a scalar field.

In Engineering
Meaning of field $=$ Meaning of function.
The field implies spatial distribution of a quantity.

Fig. 193. Field of tangent vectors of a curve

Fig. 194. Field of normal vectors of a surface

Example 1 Scalar function

The distance from a fixed point p_{o} to any point p is a scalar function, $f(p)$.
$f(p)$ defines a scalar field in space $\quad \rightarrow \quad$ It means that the scalar values are distributed in space.

$$
f(p)=f(x, y, x)=\sqrt{\left(x-x_{o}\right)^{2}+\left(y-y_{o}\right)^{2}+\left(z-z_{o}\right)^{2}}
$$

In a different coordinate system
$\rightarrow \quad p$ and p_{o} have different forms, but $f(p)$ has the same value.
$\rightarrow f(p)$ is a scalar function.

Direction cosines of the line from p_{o} to p depend on the choice of coordinate system.
\rightarrow Not a scalar function.

Example 3 Vector Field (Gravitation field)
Newton's law of gravitation

$$
|\vec{F}|=\frac{c}{r^{2}} \quad: r=\sqrt{\left(x-x_{o}\right)^{2}+\left(y-y_{o}\right)^{2}+\left(z-z_{o}\right)^{2}}
$$

The direction of \vec{F} is from p to p_{o}.

$\vec{F}(x, y, z)$ defines a vector field in space.

- In vector form

Define the position vector,

$$
\vec{r} \equiv\left(x-x_{o}\right) \hat{i}+\left(y-y_{o}\right) \hat{j}+\left(z-z_{o}\right) \hat{k} \quad: \text { Its direction is from } p_{o} \text { to } p
$$

Then

$$
\vec{F}=-\frac{c}{r^{3}} \vec{r}
$$

Fig. 196. Gravitational field in Example 3

Vector Calculus

Convergence

An infinite sequence of vectors $\vec{a}_{(1)}, \vec{a}_{(2)}, \vec{a}_{(3)}, \ldots$ converges to \vec{a} if

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\vec{a}_{(n)}-\vec{a}\right|=0 . \\
\rightarrow & \lim _{n \rightarrow \infty} \vec{a}_{(n)}=\vec{a} \quad: \vec{a}, \text { limit vector }
\end{aligned}
$$

Similarly, a vector function $\vec{v}(t)$ has the limit \vec{l} at t_{0} if

$$
\begin{aligned}
& \lim _{t \rightarrow t_{o}}|\vec{v}(t)-\vec{l}|=0 . \\
\rightarrow & \lim _{t \rightarrow t_{0}} \vec{v}(t)=\vec{l}
\end{aligned}
$$

Continuity

$\vec{v}(t)$ is continuous at $t=t_{0}$ if

$$
\lim _{t \rightarrow t_{o}} \vec{v}(t)=\vec{v}\left(t_{o}\right)
$$

$\vec{v}(t)$ is continuous at $t=t_{0}$ if and only if its three components are continuous at t_{0}

$$
\vec{v}(t)=v_{1}(t) \hat{i}+v_{2}(t) \hat{j}+v_{3}(t) \hat{k}
$$

Definition Derivatives of a Vector Function

```
\(\vec{v}(t)\) is differentiable at \(t\) if the limit exists
    \(\vec{v}^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{\vec{v}(t+\Delta t)-\vec{v}(t)}{\Delta t}\)
    \(\uparrow\)
    Called derivative of \(\vec{v}(t)\)
```


Fig. 197. Derivative of a vector function
$\vec{v}(t)$ is differentiable at t if and only if its three components are differentiable at t.
$\rightarrow \vec{v}^{\prime}(t)=\left[v_{1}{ }^{\prime}(t), v_{2}{ }^{\prime}(t), v_{3}{ }^{\prime}(t)\right]$

- Differentiation rules

$$
\begin{aligned}
& (c \vec{v})^{\prime}=c \vec{v}^{\prime} \\
& (\vec{u}+\vec{v})^{\prime}=\vec{u}^{\prime}+\vec{v}^{\prime} \\
& (\vec{u} \bullet \vec{v})^{\prime}=\vec{u}^{\prime} \bullet \vec{v}+\vec{u} \bullet \vec{v}^{\prime} \\
& (\vec{u} \times \vec{v})^{\prime}=\vec{u}^{\prime} \times \vec{v}+\vec{u} \times \vec{v}^{\prime} \\
& (\vec{u} \vec{v} \overrightarrow{\mathrm{w}})^{\prime}=\left(\vec{u}^{\prime} \vec{v} \overrightarrow{\mathrm{w}}\right)+\left(\vec{u} \vec{v}^{\prime} \overrightarrow{\mathrm{w}}\right)+\left(\vec{u} \vec{v} \overrightarrow{\mathrm{w}}^{\prime}\right)
\end{aligned}
$$

Example 4 Derivative of a Vector Function of Constant Length
Let $\vec{v}(t)$ be a vector function with a constant length, $|\vec{v}(t)|=c$.

$$
|\vec{v}(t)|^{2}=\vec{v}(t) \bullet \vec{v}(t)=c^{2}
$$

The total derivative

$$
\begin{aligned}
(\vec{v} \bullet \vec{v})^{\prime}=2 \vec{v} \bullet \vec{v}^{\prime} & =0 \\
\uparrow & \\
\vec{v}^{\prime} & =0 \text { or } \vec{v} \perp \vec{v}^{\prime}
\end{aligned}
$$

Partial Derivatives of a Vector Function

Let the components with two or more variables be differentiable (ex.wind direction w.r.t. time and altitude)

$$
\vec{v}=v_{1}\left(t_{1}, t_{2}, \ldots t_{n}\right) \hat{i}+v_{2}\left(t_{1}, t_{2}, \ldots t_{n}\right) \hat{j}+v_{3}\left(t_{1}, t_{2}, \ldots t_{n}\right) \hat{k}
$$

The partial derivative of \vec{v} with respect to t_{m}

$$
\frac{\partial \vec{v}}{\partial t_{m}}=\frac{\partial v_{1}}{\partial t_{m}} \hat{i}+\frac{\partial v_{2}}{\partial t_{m}} \hat{j}+\frac{\partial v_{3}}{\partial t_{m}} \hat{k}
$$

The second partial derivative

$$
\frac{\partial^{2} \vec{v}}{\partial t_{,} \partial t_{m}}=\frac{\partial^{2} v_{1}}{\partial t_{,} \partial t_{m}} \hat{i}+\frac{\partial^{2} v_{2}}{\partial t_{,} \partial t_{m}} \hat{j}+\frac{\partial^{2} v_{3}}{\partial t_{,} \partial t_{m}} \hat{k}
$$

Example 5 Partial derivatives
$\mathbf{r}\left(t_{1}, t_{2}\right)=a \cos t_{1} \mathbf{i}+a \sin t_{1} \mathbf{j}+t_{2} \mathbf{k}$.
$\frac{\partial \mathbf{r}}{\partial t_{1}}=-a \sin t_{1} \mathbf{i}+a \cos t_{1} \mathbf{j} \quad$ and $\quad \frac{\partial \mathbf{r}}{\partial t_{2}}=\mathbf{k}$.

